
Emulating Coronal Field Models with Physics-Informed Neural Nets
N. H. Mathews and B. J. Thompson

How Do We Include Neural Nets in a 
Physical Model Workflow?

• Neural nets tend not to have strong convergence guarantees with respect to training or 
testing data. We cannot be confident even well-trained neural nets will model physical 
systems self-consistently. 
• Some varieties can provide reasonably realistic solutions to even complicated 

equations very quickly once trained.
• This makes them the perfect tool to fill any need for fast, approximate solutions to 

nonlinear differential equations.

• Exactly such a need exists in inverse modeling.
• Solving an inverse problem requires many evaluations of a parameterized forward 

model at different points in the parameter space.
• Synthetic observations developed based on those model solutions are then 

compared to true observations, and the realization of the model which minimizes 
the difference between the two sets of observations, or the cost function, is 
determined to be the true state of the magnetic field.

• [Mathews, Flyer and Gibson 2022] presents a forward, plasma-parameterized 
magnetohydrostatic (MHS) solver that could be used in such a framework, but it is too 
slow to make the actual inversion feasible.
• Simply speaking, it would take too long to run the model as many times as would be 

required to build an accurate realization of the true magnetic field that minimizes the 
cost function for a given true observation set.

• So we use the neural net first, constructing many quick, approximate MHS solutions to 
sample the parameter space.
• Near where we expect the cost function minimum to be, we then run the full MHS 

model only a few times.

Training the Neural Net 2:
Boutique Solutions

• MHS is a difficult partial differential equation for any reasons.
• It can produce nonunique solutions given boundary conditions if the interior plasma 

forcing is weak.
• If we are sampling cost functions produced by two different methods, they may 

produce very different cost functions even when provided the same parameter 
vector.

• Important to not just train the neural net to produce nearly-MHS fields, but rather to 
emulate the particular MHS solver we intend to use in later refinement.

• We have produced a training dataset from the [Mathews, Flyer and Gibson 2022] solver 
containing samples with a variety of parameter-space values. The first part of the 
training data provided to the model consists of this dataset.

Training the Neural Net 1:
Physics Information

• We build the neural net as one which is physics-informed (Physics-Informed Neural Net, 
or PINN).
• By keeping track of the gradients of the output magnetic field with respect to 

computational node location, we can construct spatial field derivatives, and so 
compute MHS balance of the magnetic field very cheaply.

• We can include this difference from MHS balance as an additional objective in the 
training loop.

• Not only does this provide the neural net optimization scheme with better information 
as to how to reduce the objective vs ground truth in the boutique training cases, it also
allows us to train on un-precomputed parameter vectors.
• We can drastically increase the size of our training dataset, and potentially the 

results of our model, by using new, semirandom parameter values and setting the 
objective function to a measure of the MHS residual.

Neural Net Architecture
• Our neural net is built out of a series of convolutional Fourier layers, c.f. [Li et al 2021].
• To preserve the meshfree property of the [Mathews, Flyer and Gibson 2022] solver 

and also allow propagation of the spatial derivatives through the layers for the 
Physics-Informed training component, we use the Non-Uniform Fast Fourier 
Transform, c.f. [Barnett, Magland and af Klinteberg 2019].

• The first convolutional layer propagates boundary data to the 3D nodepoints, and then 
that representation is further convolved with plasma forcing data to determine the 
magnetic field.

Forthcoming Work
• The next step is the actual implementation of the inversion framework, and the use of 

the neural net as an emulator to enable that implementation.
• We will use a trust-region-style derivative-free global optimization method, such as 

that proposed in [Dalmasse et al 2016].
• The synthetic observables will be computed by FORWARD [Gibson et al 2016].

• This variety of framework was proposed and tested with a simple model in [Dalmasse et 
al 2019], but the more generalized model we plan here is expected to provide much-
improved results that can be generalized to real-sun images.

Intermediate Results
• By constructing the neural net as we have, as a series of convolutional layers, we can 

deduce scientifically interpretable results from the layer weights
• This is normally very challenging to do with deep learning approaches.

• The shape of the first convolutional kernel describes the propagation of photospheric
boundary information into the upper corona.

• Relative weights in the layer immediately following the concatenation of plasma forcing 
is indicative of the importance of plasma forcing to the final solution.

More Information
Mathews, Flyer and Gibson paper:

https://doi.org/10.1016/j.jcp.2022.111214
Mathews, Flyer and Gibson code:

https://github.com/apt-get-nat/RBF-MHS
Dalmasse et al 2019 paper:

https://doi.org/10.3847/1538-4357/ab1907

Code for this poster is forthcoming, and will be posted at
https://github.com/apt-get-nat/ Digital copy of this poster

Boundary condition node locations

Boundary condition magnetic field

Coronal volume node locations

Shallow Convolutional Layer

Coronal volume plasma forcing

Deep Convolutional Layer

Coronal Volume magnetic field

Magnetic field spatial derivatives

#031

Parameters and magnetic field linesfor one such boutique training solution from the 
[Mathews, Flyer and Gibson 2022] solver 


