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Abstract
Magnetic helicity is conserved under ideal magnetohydrodynamics and quasi-conserved even under a resistive
process. The standard definition for magnetic helicity cannot be applied directly to an open magnetic field in a
volume, because it is gauge-dependent. Instead, the relative magnetic helicity is widely used. We find that the
energy of a potential magnetic field in a rectangular domain with periodic lateral boundary conditions is less
than that of the field with a fixed normal component on all six boundaries. To make use of this lower energy
potential field in the analysis of relative magnetic helicity, we introduce a new definition for magnetic helicity
for the magnetic field, which involves the periodic potential field. We apply this definition to a sequence of
analytic solutions and a numerical simulation. The results show that our new gauge-invariant helicity is very
close to the current-carrying part of the relative magnetic helicity of the original magnetic field. We find also
that the ratio between the current-carrying helicity and the relative magnetic helicity for the original and
our defined relative helicity show different behavior. It seems that the new helicity is more sensitive to the
component of the field due to the electric current in the volume, which is the source for instabilities and solar
eruptive phenomena.

Model
Old: In the classical definition, a magnetic field B in a three-dimension (3D) volume, Ω, will be decomposed
as Bj+Bp, with the boundary condition (B−Bp) · n̂|∂Ω = 0, where ∂Ω is the boundary and n̂ is the associated
unit normal vector. Thus Bp can play the role of the reference field. With this decomposition, Finn & Antonsen
(1985) define the relative magnetic helicity as,

Hr =

∫
Ω

(A+Ap) · (B−Bp)d
3x. (1)

This formula is widely used in both theoretical and numerical computation. Specifically, Berger (1999) show
that this relative helicity can be rewritten as the sum of another two gauge-invariant helicity Hr = Hj +Hpj,

Hj =

∫
Ω

(A−Ap) · (B−Bp)d
3x, (2)

and
Hpj = 2

∫
Ω

Ap · (B−Bp)d
3x. (3)

New: Consider a cartesian domain, we can decompose a 3D magnetic field B into a current-associated field
and a potential field with periodic boundary condition, B = B0 + Bc. In this case B0 does not match the
lateral boundary condition on B, and therefore, Bc · n̂ on the lateral boundaries does not vanish. It is not
possible to use the periodic potential field, B0, as a reference field for the relative magnetic helicity, required
by the gauge-invariant. Following the original definition from Berger & Field (1984), we can decompose Bc

into two parts, Bc = Bc1 +Bp1, where Bp1 is the solution of Laplace’s equation that satisfies the boundary
condition (Bc −Bp1) · n̂|∂Ω = 0 on all boundaries. Considering Finn & Antonsen (1985), we can then define a
gauge-invariant relative magnetic helicity for the field Bc,

Hcr =

∫
Ω

(Ac +Ap1) · (Bc −Bp1)d
3x, (4)

where, Ac and Ap1 are the corresponding vector potential field. Obviously, this helicity can be decomposed
into another two gauge-invariant helicity, Hcr = Hcj +Hcpj, where

Hcj =

∫
Ω

(Ac −Ap1) · (Bc −Bp1)d
3x, (5)

and
Hcpj = 2

∫
Ω

Ap1 · (Bc −Bp1)d
3x. (6)

Difference: The most important difference between the original helicity and our definition is that our one,
Hcr, is much closer to the mutual helicity between the current-carrying part of the field and the potential field,
Hpj .

Result
The model are applied to two two cases, a pseudo emergence processs and a eruptive case. We decrease the

depth parameter in a series of Titov-Démoulin flux-rope models to mimic an artificial emergence process for
the current system, helicity and energy are injected into the computational domain similar to what happens
during the emergence of a solar active region. However, there is no physical flow on the boundary, so the
associated injection flux can not be calculated directly. The eruptive case come a isothermal MHD simulation
using TD model as the initial condition. In both cases, the potential field component, Bp1 is very small, which
makes Hcpj close to zero because it is the coupling between this component of the potential field and the
current-carrying part. Therefore, the value of Hcr is very close to that of Hj and shows a monotonic increase
during the whole simulation period. In the eruptive case, the helicity associated with the potential field Bp

does not show a departure from Hr in this case. That is due to the boundary conditions: Bz is fixed in this
case; whereas in the emergence case, Bz changes due to the line current and magnetic charges approaching the
lower boundary.
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