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Updates

● Closest approach to Sun so far 
● 110 degrees longitude swept out between corotation intervals

Comparison of Encounter 10 & 11 Encounter 10 Prediction Validation and Stream Structure

Time

2021 

Source Surface Longitude

● Extreme change in relative angular velocity means structures in time and space look very different.
● We see the entire time series from 11/17 to 11/21 is the same fast wind stream being explored in one 

direction than the other
● For encounter 10, we see spatial structure of 3 clear solar wind streams, separated by sub-alfvenic 

intervals (vertical shading). [C.f. recent studies of PSP crossing the Alfven Surface [13,14]

Conclusions

● Rapid relative motion of PSP in recent orbits with respect to solar rotation leads to significant and 
important differences in interpreting in situ data in terms of large scale structure and sources. 
Casting the independent variable from time to spacecraft position is important for accounting for 
this. This will only become more important as the mission proceeds.

● Encounter 10 is a demonstrative example with clear correspondence between large scale in situ 
data and distinct (and predictable) modeled solar wind sources.

● 13.3 Rs orbit family is colliding with a real uptick in solar activity, each encounter has been very 
different in character so far!

The What…. 
● We model the source regions for encounters 10 and 11 which are 

the first PSP [1] orbits with perihelia at 13.3 Rs.

● Model predictions from various modelers are combined for each 
encounter to establish a consensus blind prediction for solar 
observers.

● We compare the predictions to in situ data after the fact, and find 
the extreme and rapid variation in spatial position leads to new 
and robust in situ-model comparisons. We highlight the 
importance of viewing the datasets in terms of spacecraft position

…and the Why
● Establishing the source region which results in given 

measurements at PSP allows important contextualization of the 
data in one direction and model validation/improvement in the 
other.

● PSP’s orbit will continue to become more extreme and so 
tracking the implications of its changing orbit in source 
localization is important.

Making a Connection

Heliospheric Part
● Analytic assumption of Parker 

spiral (Vsw as input) 

Coronal Part
● Field ine tracing through 

numerical grid

Result : A continuous fieldline described by 3d coordinates in the 
Carrington frame, for each spacecraft position grid point, from 
spacecraft position, down to the photosphere.

(2) Establish consensus
● Form ensemble from multiple model predictions
● Fit ensemble with a Kent distribution
● Results in consenus centroid and error region (FWHM ellipse)
● Sanity check : is the distribution unimodal and well clustered? 

Is the consenus footpoint located in a likely source (coronal 
hole, active region, …) according to EUV data

(3) Iterate in time and publish to web : 
Footpoint prediction data, summary plots and 
narrative forward in time from date of 
prediction. 

For encounter 10, prediction was 3 distinct 
coronal holes sequentially one after the other.

See : https://sppgway.jhuapl.edu/encounters (all encounters) 
and   https://whpi.hao.ucar.edu/whpi_campaigns.php 
(perihelion on disk encounters)

(1) Gather Model Predictions
Individual modelers provide footpoint longitude, 
latitude and timestamp, projecfed forward in 
time with the most recent magnetogram.

3D Lat/Lon 
Projection

Wang-Sheeley-Arge [3] pfsspy / UCB [4,2,5,6,7]

Predictive Science Inc. [8,9] MS-FLUKSS / UAH [10]

1 2 3

1 -> 2 -> 3

Source 
Type Large CH Transition Large CH Transition Small/exte

nded CH

Polarity - - - - -

1/f_exp Large Small Large Small Small

Model Summary

In Situ Summary
1 -> 2 -> 3

Vsw (km/s) 500-700 ~250 ~400-500 < 200 ~250

Polarity - - - - -

Alfven 
Mach # > 1 < 1 >1 <1 > 1

1

2

3

E10 E11

Comparison: 
● Strong correlation between number of streams measured in situ and number of different 

coronal hole features sampled in the model. 
● Near-Solar max conditions resulting in continuous mid-latitude and equatorial connectivity.
● More than half the Sun sampled in prograde part of orbit.
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