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Introduction
The identification and reconstruction of monotonic and coherent

magnetic configurations observed within Interplanetary

Coronal Mass Ejections (ICMEs) is critical for predicting the

geomagnetic effect of these structures arriving at Earth. These

internal structures of ICMEs are often associated with a

spacecraft crossing a large flux rope with a helical magnetic

field lines topology, . As inspired by Nieves-Chinchilla et al.

(2018, 2019), we use machine learning techniques to interpret

the ICME in situ magnetic field observations and understand in

depth what in situ magnetic field observations should be

expected by spacecraft when it crosses flux ropes with

different trajectories (2019).

We examine how effectively a Convolutional Neural Network

(CNN) can recognize flux rope signatures from a set of

combined hodograms and forecast the flux rope's orientation.
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• Synthetic magnetic field component hodograms (Figure (b))

data, created using the EC model (Nieves-Chinchilla et al

2018) as input for the CNN (Figure (a)) model.

• Total of 132000 unique events varying all flux rope

direction parameters.

• The model was trained for 50 epochs with no-noise data.

After, we chose the best performing model for no-noise

data and proceeded to train it with data with 5% and

10% noise respectively. We do the stepwise training

procedure to evaluate how noise affects the classification's

performance and understand how it affects the model

learning.

Identifying Flux Rope Signatures
Training Results

In this part of he project we trained a CNN (Figure

(b)) to identifying Flux Rope signatures in ICMEs

observed by Wind and reproduce the flux rope

identification from Nieves-Chinchilla et. al 2019. For a

successful training we did the following:

• Trained the CNN model for 50 epochs, since a

strong overfitting was observed after.

• During the training we used a selected 32 well

behaved events to validate the model results. The

results of training with the 32 selected is available

at Table 1.

• In Table 1, we see the machine learning model had

good performance across all three levels of noise,

with a high F1 Score, Recall, and Precision of 0.89

for the no noise model and 88% accuracy.

• Metrics drop to 0.88 for F1 Score and 0.78 for

Precision with 5% noise. In addition, the accuracy

decreased a little to 84% with the 5% noise

machine learning model.

• With the10% noise results, the Precision of 0.7 and

F1 Score of 0.78, demonstrates an even worse

performance on classifying NFR cases.
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Figure (c)

Forecasting Flux Rope orientation

• The model was trained for 500 epochs. We use the

synthetic time series of magnetic field components ([𝐵𝑥, 𝐵𝑦,

𝐵𝑧], Figure (d)) data created using the CC model (Nieves-

Chinchilla et al 2016) for training and testing the CNN

model (Figure (c)).

•

Finally, the model has an accuracy of 72%. The results display a good performance of the model, although no real event were used in the

actual training of the machine learning model weights. These numbers represent our model's capability to identify real flux ropes, although

being only trained with synthetic data. A more in-depth analysis of the missed events and a one-by-one comparison was done at Dos Santos et

al. 2020.

Inference Results

In Table 2 are the results for the remaining 270 events, we didn’t included events classified as “Complex (Cx, i.e., having more than one rotation

structure inside)”. Table 2 contains extracted quantities from the confusion matrices (Figure (e)) from all three machine learning models evaluated

and some complementary metrics to understand the classifications. According to the accuracy in Table 2, the 5% noise synthetic data results

indicate the machine learning model can predict 76% of Non-flux ropes correctly and has a precision of 0.95, resulting in a high Recall and F1

Score. This results indicate the model is very robust and has a lot of potential to be improved.

Forecast Flux Rope Orientation
Training Results

In this part of the project, we trained a CNN (Figure (c)) to

forecast the flux rope orientation of ICMEs observed by

Wind and compare with the orientation found in Nieves-

Chinchilla et. al 2018. The flux rope orientation is

composed by two angles (phi and theta), impact

parameters and helicity. For the model development we

did the following:

• We divided the created synthetic data in 60% (58,

800) for training, 20% (19,600) for validation and

20% (19,600) for testing.

• The CNN was trained from 500 epochs.

• Different from the previous project, we only trained on

noise-free data for this part.

Looking at these results we can see the model was able to

predict all values for the helicity correct. Also, it predicted

the angles with 10 degrees less difference from ground

truth for both phi and theta angles and 10% less

difference for the impact parameter.
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Figure (a) – Example of flux rope observed and fitted by Nieves-Chinchilla et 

al 2019.

Figure (b)

Figure (f) contains histograms for the difference of the predicted value and the ground truth. From left to 

right,  there is the difference between ground truth and predicted value for phi, theta and the impact 

parameter. Lastly it contains a histograms of the correct predictions for the chirality. (i) show the results

on testing in real events and (ii) contains the results for testing in synthetic results.

(i)

(ii)

Table 3 - contains the median parameter differences by 

percentage for all two angles and the impact parameters. 

From top to bottom it increases the amount of flux rope 

observed from 10% to 100% in steps of 10%

Figure (d) – Events of 

September 18th, 2010. Flux 

rope observed  by Wind 

spacecraft. The pink line 

refer to the fitting done by 

Nieves-Chinchilla et al 

2019. From top to bottom 

we observe the component 

Bx, By and Bz of the 

magnetic field.

Partial Predictions

In addition to the previous work, we decided to extrapolate the model and see if we could

predict the flux rope orientation using only partial data, simulating a “nowcasting” of a flux

rope orientation during its crossing. Like the previous part we divided the synthetic in situ data

in 60% for training, 20% for validation and 20%.

We included data for the same event with 10% to 100% of the event data. Therefore, the

dataset is 10 times larger than the previous one. Again, the CNN was trained for 500 epochs.

The results for this experiment are in table 3., which in all cases are small. It worth noticing that

the peak performance happens with 80-90% percent of the flux rope observed, which goes

against our expectations that would be at 100%.

Table 1 contains metrics for the testing CNN model 

trained in different level of noises  when applied to the 

subset of 32 real events set

Table 2 contains metrics for the testing CNN 

model trained in different level of noises  when 

applied to the  lager 270 real events set

Figure (e) contains 3 confusion matrices with the prediction results when the CNN model is tested on the 

larger 270 events set. From left to right, we have the results for the model trained with no noise, 5% and 10% 

respectively

Later we applied the same trained model to 70 events from Nieves-Chinchilla et al. 2019 classified as “Fr”. The results show there is a

limitation on the model’s prediction and all the metrics decrease. Still, there is a clear peak close to zero for the angle’s and impact parameter’s

metrics. In addition, the model could successfully identify the chirality in more than 80% of the cases.

These results shows clear potential on the model to be explored and improved. Many additions can be made on the model like train on data

with fluctuations, explore the different architectures, optimize the hyperparameters etc.


