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Abstract 
Key Questions: 1) How do standard machine learning classifiers used 
for flare prediction perform in real-time? 2) How do training methodolo-
gy, data volume, and solar activity affect forecasts?

Motivation: Flare prediction models are typically trained and tested 
using a random set of flaring (and non-flaring) data, which is inconsis-
tent with real-time flare forecasting. Here, we focus on training classifi-
ers using data only available prior to the forecast date.

Experiment: We train our classifiers with three different datasets se-
lected from Georgia State’s SWAN-SF database:  1) a stationary window 
utilizing data prior to the first prediction in the series, 2) a rolling 
window utilizing data from a constant time interval prior to the predic-
tion, and 3) an expanding window utilizing all data prior to the forecast-
ing instance (see Fig. 1). We then investigate how performance scales 
with the number of features used, as well as the temporal size of the 
stationary and rolling windows (see Fig. 2 & 3). We also explore the rela-
tionship between classifier performance and the background soft X-ray 
(SXR) flux (see Fig. 4). Lastly, we develop an innovative method to visual-
ize a classifier’s performance as time progresses (see Fig. 5).

Salient Results: 1) Simple ML classifiers provide similar skill scores to 
more complex models when using point-in-time magnetogram data for 
real-time forecasts. 2) In general, the number of features used does not 
have a significant effect on performance. 3) When utilizing a 20-month 
stationary or rolling window, performance is comparable to the expand-
ing window. A slight decrease in performance is observed when the 
window size is reduced. 4) A strong positive Spearman correlation exists 
between the flare quiet false positive rate and the background SXR flux. 
High background flux complicates the detection of weak (~M1.0) flares 
and increases the potential for flares to overlap with stronger events in 
progress. Since our predictive models are based on magnetogram fea-
tures, our models may be correctly predicting the occurrence of a flare. 
However, if the flare went undetected in SXR, it would be labeled incor-
rectly in SWAN-SF.

Methodology (Continued) Training Window Results

Data
• Space Weather Analytics For Solar Flares (SWAN-SF)
▪ Active region magnetogram time series data
◦ Spans most of Solar Cycle 24 (2010 – 2018)
◦ All time series are 12 hours in length with a 12-minute cadence.
◦ 24 derived physics-based parameters
◦ Labels are chosen based on the strongest flaring event in the fol-

lowing 24 hours.
▪ Non-flaring events: Flare quiet + A, B, & C class flares
▪ Flaring events: M & X class flares 
▪ To simplify our predictions, each time series is reduced to a single 

point-in-time summary statistic vector based on the mean, median, 
standard deviation, max, and min of each magnetogram parameter.

• Geostationary Operational Environmental Satellite (GOES) daily SXR 
flux data
▪ We select the daily minimum value of the 1-8Å SXR flux as a proxy 

for the background SXR level.

Machine Learning Classifiers
• Decision Tree (DT)

• Support Vector Machine (SVM)
▪ Gaussian radial basis function kernel

• Multilayer Perceptron (MLP)
▪ Three-stage hidden layer (50 -> 25 -> 12 nodes)

• Hyper-parameters are optimized through an extensive grid search.
▪ A stratified group 5-fold cross-validation is applied for parameter 

selection.

SXR Correlation + Novel Visualization

Methodology

Conclusions

Simulated Real-time Training Windows

• Training data is generated using one of the three windows shown in 
Fig. 1.

• Testing data is generated using three-month blocks following the first 
training window.

• We retain all flaring data and randomly undersample (while preserving 
climatology) non-flaring data within the training window to match the 
number of flaring events.

• To investigate how performance scales with the number of magneto-
gram features used, we test 1, 5, 10, 25, 50, and 120 features.
▪ Features were selected based on those with the highest scoring 

ANOVA F-value in the training dataset.

• To investigate the impact of data volume on performance, we explore 
different stationary and rolling window sizes (5, 8, 11, 14, 17, and 20 
months).

Performance Metrics
• True positives (TP), true negatives (TN), false positives (FP), false neg-

atives (FN)

Background SXR Flux Correlation
• For each 25 feature classifier, we calculate the Spearman correlation 

coefficient between the monthly flare quiet false positive rate (FP / 
[FP + TN]) and the background SXR flux. 
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5/1/10 - 8/18/18 Entire Dataset

5/1/10 -12/31/11 Stationary Training Window

1/1/12 - 3/31/12 Testing Period 1

4/1/12 - 6/30/12 Testing Period 2

7/1/12 - 9/30/12 Testing Period 3
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5/1/10 - 8/18/18 Entire Dataset

5/1/10 -12/31/11 Rolling Training Window 1

1/1/12 - 3/31/12 Testing Period 1

4/1/12 - 6/30/12 Testing Period 2

7/1/12 - 9/30/12 Testing Period 3

11/1/10 - 6/30/12 Rolling Training Window 3

8/1/10 -3/31/12 Rolling Training Window 2
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5/1/10 - 8/18/18 Entire Dataset

5/1/10 -12/31/11 Expanding Training Window 1

1/1/12 - 3/31/12 Testing Period 1

4/1/12 - 6/30/12 Testing Period 2

7/1/12 - 9/30/12 Testing Period 3

5/1/10 - 6/30/12 Expanding Training Window 3

5/1/10 -3/31/12 Expanding Training Window 2
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Fig. 4: (Left) Boxplots of the Spearman correlation coefficients calculat-
ed between the flare quiet false positive rate and the background SXR 
flux. The triangles indicate the mean of the distributions. (Right) A scat-
ter plot for the strongest correlation observed in the MLP trials 
(14-month stationary window).

Fig. 2: The average TSS and HSS₂ scores for DT, SVM, and MLP using a 
number of features (1, 5, 10, 25, 50, 120) and window types. Note: These re-
sults were obtained using a stationary and rolling window of 20 months.

Fig. 3: The average TSS and HSS₂ scores for DT, SVM, and MLP (25 features) 
with varying window sizes (5, 8, 11, 14, 17, 20 months). Naturally, scores for 
the expanding window are the same across window sizes. Note: The missing 
stationary data in the red wedge has an average TSS score of 0.26 +/-  0.05.

Fig. 1: The three training windows tested in this study. 
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Fig. 5:  A stacked bar chart of true positive and false negative predictions 
over time for a single trial of the MLP expanding window. Each bar rep-
resents flare counts grouped by flare strength, stacked over one-month 
intervals. Color corresponds to flare strength.

• 25 magnetogram features is optimal for balancing performance and 
complexity. Improvements beyond this threshold are minimal.

• Forecasting with a single feature does not significantly degrade classifi-
er performance, emphasizing the inherent simplicity of our dataset.

• Interestingly, skill scores are similar across the 20-month stationary, 
rolling, and expanding windows. Below this threshold, TSS or HSS₂ 
scores gradually decrease, depending on the classifier and window type. 

• DTs perform surprisingly well in comparison to SVMs and MLPs. This 
suggests that DTs are a viable alternative to these more complex 
models, especially if physically interpretable forecasts are important.

• To achieve the best possible performance, an MLP with a large rolling or 
expanding window and 25+ features should be implemented. If you are 
limited to a single training phase, a 20 month stationary MLP with 25+ 
features should be used.

• A strong positive Spearman correlation exists between the flare quiet 
false positive rate and the background SXR flux. This may be caused by 
obscured flares, which are incorrectly labeled as flare quiet in SWAN-SF.


