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Motivation
Space Weather with Quantified Uncertainty

NextGen SWMF Project: Reliable long-term predictions of space weather events and impact, for example
Coronal Mass Ejections (CMEs) require:

Accurate physics-based modelling, propagating uncertainties from model inputs and parameters and updating
knowledge of parameters (DA framework with suite of observations)
Identification of critical parameters.
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Fig 1 (a) Overall framework for NextGen SWMF
(b) Challenges and solution approaches

Augment AWSoM with trained
surrogates: KLE-PCE, Operator Learning

(ongoing)

Stage 1: Simulations of quiet solar wind with AWSoM [van der Holst et al. (2014)] to perform Global
Sensitivity Analysis (GSA) and downselect important parameters

Stage 2 (ongoing): Conduct simulations of multiple CME events with joint design of solar wind - flux rope
parameters

Workflow for CME Simulations
EEGGL- Gibson-Low Flux Rope, AWSoM - CME Propagation
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Fig 2 : Conducting Sun-to-Earth Simulations using EEGGL and AWSoM, with multiple data products
(remote and in-situ) to validate simulations

Emulating White Light Images
First Step: POD based surrogate
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Fig 3 Clusters of image data based on the Wasserstein distance, used to create balanced training set for

the emulator
General |dea of Proper Orthogonal Decomposition — describe spatio-

or(z) temporal fields using linear combinations of basis functions
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These expansions map parameters from
physical space to expansion coefficents via
orthogonal polynomials

Eigenvalues and eigenfunctions of sample covariance
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Fig 4 Sample emulator predictions vs true AWSoM simulation image for two test simulations. The emulator can
capture relevant structure but carry significant bias in speed

Advantages:

« Computationally inexpensive (requires SVD of a moderately sized matrix and linear regression)

« Modes describe variation across parameter space (i.e. global model is learnable from available
simulations)

Drawback:

Limited extrapolation capability on account of lack of constraints from physical model
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Method 2: Operator Inference

Popular Approach for Projections of Dynamical Systems

Operator Inference or Oplnf: [Peherstorfer and Willcox 2016, Issan and Kramer 202 3]
Data-driven Reduced Order Model (ROM) - model the dynamics of a system of ODEs by inferring
low dimensional operators in a non-intrusive manner
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Infer low dimensional operators via linear regression
(user choice on number of polynomial terms)

For every individual simulation (C3 Coronagraph FOV):
Infer dynamics and extrapolate (linear and quadratic)
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Advantages:
* Models the change in brightness as a function of time and flux rope parameters
» Canextrapolate better with limited training whereas vanilla POD errors grow quickly

Drawback:

* (Choosing suitable model form for the ROM when approximating an unknown ODE can be
difficult.

* |earning global model requires interpolation in high-dimensional operators for limited
training data

Comparisons and Next Steps

Incorporating Better Model Constraints
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Fig 7/ and 8 Operator Inference Predictions and Relative Error v/s that of POD based method.
While the comparison favours Oplnf, the error is still too high to be practically useful in emulation

Planned Improvements:
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Learning better reduced dimensional approximations e.g. via tensor decompositions

Incorporating hybrid physics-ML approaches, e.g. learning operators via Neural
Ordinary Differential Equations

[UQ)]: Construct prediction intervals from learnt operators to quantify
uncertainties
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The Open Source version of the SWMF, the Michigan Sun-to-Earth Model with
Quantified Uncertainties and Data Assimilation is available at:

allocation on the Frontera supercomputer at TACC.

_ ’ https://github.com /MSTEM-QUDA — SV‘J
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