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The Open Source version of the SWMF, the Michigan Sun-to-Earth Model with 
Quantified Uncertainties and Data Assimilation is available at:

https://github.com/MSTEM-QUDA

Motivation
Space Weather with Quantified Uncertainty

NextGen SWMF Project: Reliable long-term predictions of space weather events and impact, for example 
Coronal Mass Ejections (CMEs) require:

Accurate physics-based modelling, propagating uncertainties from model inputs and parameters and updating 
knowledge of parameters (DA framework with suite of observations)

Fig 1 (a) Overall framework for NextGen SWMF 
(b) Challenges and solution approaches

Stage 1:   Simulations of quiet solar wind with AWSoM [van der Holst et al. (2014)] to perform Global 
Sensitivity Analysis (GSA) and downselect important parameters

Stage 2 (ongoing):   Conduct  simulations of multiple CME events with joint design of solar wind - flux rope 
parameters
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Identification of critical parameters. 
e.g.Global Sensitivity Analysis (completed 
for background solar wind – Jivani et al.)

Approximate Bayesian methods 
to constrain parameters in 
expensive simulations (ongoing)

Augment AWSoM with trained 
surrogates: KLE-PCE, Operator Learning 
(ongoing) 

Correlate White Light 
predictions with 1au 
quantities (Chen et al. 
2023, in preparation)

Method 2: Operator Inference
Popular Approach for Projections of Dynamical Systems

Emulating White Light Images
First Step: POD based surrogate

Comparisons and Next Steps
Incorporating Better Model Constraints

Fig  3  Clusters of image data based on the Wasserstein distance,  used to create balanced training set for 
the emulator

• Chen et al. 2023, Solar Model UQ Stage II, Space Weather, in preparation
• Peherstorfer, B., & Willcox, K. 2016, Computer Methods in Applied Mechanics and Engineering, 306, 19, doi: 

10.1016/j.cma.2016.03.025 
• Issan, O., & Kramer, B. 2023, Journal of Computational Physics, 473, 111689, doi: 10.1016/j.jcp.2022.111689
• van der Holst, B. et al. 2014,  ApJ, 782, 81, doi: 10.1088/0004-637X/782/2/81 
• Jivani A., Sachdeva N., Huang Z. et al. 2023, Space Weather, doi: 10.1029/2022SW003262

Fig 2 : Conducting Sun-to-Earth Simulations using EEGGL and AWSoM, with multiple data products 
(remote and in-situ) to validate simulations
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Polynomial Chaos Expansions

General Idea of Proper Orthogonal Decomposition – describe spatio-
temporal fields using linear combinations of basis functions

Advantages:
• Computationally inexpensive (requires SVD of a moderately sized matrix and linear regression)
• Modes describe variation across parameter space (i.e. global model is learnable from available 

simulations)
Drawback:
Limited extrapolation capability on account of lack of constraints from physical model

ReferencesFig 4 Sample emulator predictions vs true AWSoM simulation image for two test simulations. The emulator can 
capture relevant structure but carry significant bias in speed

Eigenvalues and eigenfunctions of sample covariance These expansions map parameters from 
physical space to expansion coefficents via 

orthogonal polynomials

Operator Inference or OpInf: [Peherstorfer and Willcox 2016, Issan and Kramer 2023]  
Data-driven Reduced Order Model (ROM) – model the dynamics of a system of ODEs by inferring 
low dimensional operators in a non-intrusive manner

For every individual simulation (C3 Coronagraph FOV):

Project to !y

by any suitable 
method like POD

(Intermediate 
Step) 

Infer low dimensional operators via linear regression 
(user choice on number of polynomial terms)

Train Time Predict Time

Infer dynamics and extrapolate (linear and quadratic)

t=40 min t=120 min t=180 min

𝜃

𝑅

Fig 6 Sample Synthetic Image flattened into 𝐑 − 𝛉 space (unrolling of bright annulus)

Advantages:
• Models the change in brightness as a function of time and flux rope parameters
• Can extrapolate better with limited training whereas vanilla POD errors grow quickly

Drawback:
• Choosing suitable model form for the ROM when approximating an unknown ODE can be 

difficult.

• Learning global model requires interpolation in high-dimensional operators for limited 
training data

Fig 7 and 8 Operator Inference Predictions and Relative Error v/s that of POD based method. 
While the comparison favours OpInf, the error is still too high to be practically useful in emulation

Planned Improvements:

• Learning better reduced dimensional approximations e.g. via tensor decompositions

• Incorporating hybrid physics-ML approaches, e.g. learning operators via Neural 
Ordinary Differential Equations

• [UQ]: Construct prediction intervals from learnt operators to quantify 
uncertainties
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