
We reformulate the classic Curlometer method of current estimation to estimate 
the magnetic field at a desired point 𝑟 (see Broeren et al (2021)). This reformulation is an 
estimation of the magnetic field from individual measurements at four spacecraft via a 
Taylor Approximation:  
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 ∀𝑖 ∈ {1,2,3,4}, m ∈ {𝑥, 𝑦, 𝑧}

The above equation can be reformatted into a 12 × 12 linear system and solved exactly.

 By assuming Taylors Hypothesis, we have a set of 𝑁𝑇 measurements to draw our 

tetrahedra from. This lets us to construct
𝑁𝑇
4

 tetrahedra, rather than the
𝑁
4

 than is 

drawn from a static view of an 𝑁-spacecraft configuration. However, this number of 
possible combinations is combinatorically large, and grows super-exponentially fast! We 
therefore must constrain the number of tetrahedra that are considered for each 
reconstructed point.

The upcoming NASA mission HelioSwarm (Klein et al. (2023)) will use 

nine spacecraft to make simultaneous measurements of  space plasmas with 

separations spanning characteristic plasma scales. The space plasma community 

will use the resulting in-situ magnetometer measurements to reconstruct the 

magnetic field in regions near the spacecraft. We provide a comparison of 

common and novel reconstruction techniques that could be applied to this 

forthcoming data by generating synthetic spacecraft observations from a 

numerical simulation of turbulence. This work is intended to complement 

theoretical analyses of each of these reconstruction methods through application 

to more realistic systems, as theoretical analysis traditionally only consider 

smooth, non-turbulent, magnetic field structures.

 This comparison will quantify the topological (macroscopic) accuracy 

of the reconstructed fields using each method. As it may be desirable for a 

reconstruction method to be able to build magnetic fields with the same 

distribution of small-scale fluctuations as the underlying magnetic field, we also 

quantify how well each of these techniques reproduces the scale-dependent 

statistical (microscopic) properties of the turbulent field.

 With these analyses we hope to determine which reconstruction method 

can most accurately, in both the macroscopic and microscopic sense, reproduce 

a turbulent magnetic field. We also hope to continue this work so that we can 

conclude if this selection is dependent on the spacecraft configuration geometry, 

the number of spacecraft in the configuration, or some physical characteristic of 

the underlying plasma turbulence.
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III. Reconstruction Methods IV. Preliminary Results (Microscopic)

We have implemented three magnetic field reconstruction techniques 

that we will compare using numerical simulations. For each of these 

techniques, we have assumed that Taylor’s Hypothesis holds. Therefore, given 

𝑁 spacecraft and 𝑇 time samples from each, we have 𝑁𝑇 measurements that 

are from the same plasma, taken from different spatial locations. The 

reconstruction methods that we are comparing are as follows:

From our preliminary simulations it appears that the Timesync 

reconstruction method is superior to the Curlometer and RBF approaches 

with respect to reconstructing macroscopic turbulence structures accurately. 

It also appears that the Timesync method has the added benefit of 

reconstructing a magnetic field which reproduces the underlying statistics of 

the actual turbulence it is drawing measurements from.

 In our future work, we will repeat this analysis to verify that these 

results hold for time-evolving turbulent magnetic fields. We also wish to 

include a fourth reconstruction method in the comparison, the 3D Grad-

Shafranov method, as it includes assumptions about the physical properties 

of the field to assist the reconstruction. Finally, we will perform this analysis 

for a large bank of randomly generated spacecraft configurations, which 

contain between 4 and 9 spacecraft each.

 Following the data generation and equation learning methodology we 

developed in Broeren & Klein (2023), we will use the many configurations 

of spacecraft to get a better understanding of how each of the reconstruction 

methods accuracy depend on spacecraft configuration. We hope to learn 

equations that can tell us the expected distribution of errors in the magnetic 

field reconstruction for an arbitrary spacecraft configuration using each of 

the reconstruction methods. Our conclusions can be used to select the 

optimal magnetic field reconstruction technique (and estimate its uncertainty) 

for future multispacecraft missions measuring space plasma turbulence, such 

as HelioSwarm.
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V. Conclusions/Future Work
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II. Simulation Setup
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The radial basis function (aka RBF; see Press et al (2007)) method uses all the 
magnetic field measurements to reconstruct the magnetic field at point 𝑟 . Each 
spacecraft 𝑖’s measurement at time 𝑡 is weighted as a function of distance away from 
the reconstructed point

 𝑩 𝒓 = σ𝑖=1
𝑁 𝑤𝑖𝜑 𝒓 − 𝒓 𝑖

2
.

Common radial basis functions are:

• Gaussian:  𝜑 𝑟 = 𝑒− 𝜖𝑟 2

• Multiquadric:  𝜑 𝑟 = 1 + 𝜖𝑟 2

• Inverse:  𝜑 𝑟 =
1

1+ 𝜖𝑟 2

The Timesync reconstruction method was created by us using the idea that 
reconstructing entire timeseries of points in parallel will yield better statistical 
properties of the reconstructed field when compared to magnetic field 
reconstructions created point-wise. We do this by first finding the plane that is 
perpendicular to the bulk flow velocity 𝒗_𝑠𝑐. We then reconstructed points on this 
plane weighted by the (inverse) planar distance to each measurement. Given an 
optimally chosen weight 𝑊, the reconstruction at point 𝒓 will be given by the 
expression:
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This method can also be viewed from a shifting of timeseries perspective. By 
finding the time offset of each spacecraft’s magnetic field measurements to that of 
the desired reconstructed timeseries, we are simply shifting each timeseries by a 
fixed quantity and summing them with an optimal weight.

IV. Preliminary Results (Macroscopic)
Volume Fraction

Curlometer RBF 
Multiquadric

Timesync

Error < 20% 0.109 0.531 0.917

Error < 15% 0.096 0.382 0.803

Error < 10% 0.062 0.175 0.330

Error < 5% 0.001 0.035 0.043

Error < 1% 0.000 0.001 0.002

Compute Hours 12 1.2 0.75

We use our simulated turbulence simulation to generate synthetic timeseries data 

from a four-spacecraft configuration and implement the three reconstruction methods 

separately. We then compute the error in the magnetic field at any point in space as

Percent Error =  100
𝑩𝑐𝑎𝑙𝑐 − 𝑩

𝑩
.

 We then plot the average error with respect to the spacecraft 

configuration/trajectory below. We also compute the percent of the reconstructed 

magnetic field points which were reconstructed such that they have an error less than 20, 

15, 10, 5, and 1%, and display those results in the table. As the figure and table make 

clear, the Timesync method has the best macroscopic reconstruction and the best 

computational efficiency.

Following the work developed in 
Broeren et al. (2021), we use a shape and 
location threshold to restrict ourselves to 
well-shaped spacecraft tetrahedra

𝐸2 + 𝑃2 < 0.6 

who have a barycenter, 𝒓0 , located near
𝒓0 − 𝒓 2 < 𝐿 the reconstructed point 𝒓. This 

is the method 𝑀1.3 described in the above 
reference.

We also analyze the statistical properties of the turbulence 

simulation and compare them to the statistical properties of the 

reconstructed magnetic fields resulting from our three reconstruction 

methods. The results are shown below. The solid lines represent the 

simulated turbulent magnetic fields and the dashed lines represent the 

reconstructed magnetic fields. We have included a black dotted line 

representing a Gaussian distribution for reference.

 While none of the methods ‘Gaussianize’ the distributions, the 

Curlometer reconstruction clearly performs the worst, as it does not 

preserve any scale dependent behavior. The RBF reconstruction preserves 

the shape and relative positions of the distribution of fluctuations; however, 

these distributions seem to be shifted from the ground truth by a factor of 

about 2. Finally, the Timesync method appears to preserves the shapes, 

relative positions, and absolute positions of the distribution of fluctuations.

Curlometer RBF Timesync

Curlometer RBF Timesync

As we wish to evaluate the accuracy of the magnetic field 

reconstruction methods in an environment that is similar to that which will be 

found when sampling turbulent space plasmas, we are utilizing data from a 

numerical simulation of turbulence. This simulation of turbulence is designed 

to have properties that mirror those found in the pristine, near-Earth solar wind.  

This is achieved by simulating a proton-electron plasma within the five-

moment, two-fluid solver of the Gkeyll framework (Hakim et al. (2006)). See 

Broeren et al. (2021) for more plasma simulation details. 

 We let our spacecraft travel with a constant velocity of 𝒗𝑠𝑐 = 320 ො𝑥 to 

approximate the solar wind traveling past a relatively-stationary spacecraft 

configuration. We set the sampling rate of our synthetic spacecraft 

measurements to 4 Hz so that the spacecraft travel a distance (80 km) greater 

than the grid scale of the plasma simulation (70.1 km) between consecutive 

measurements. 

 For this preliminary work, we have selected one well-shaped four-

spacecraft configuration to analyze. This configuration has an elongation of 

0.05, planarity of 0.01, and has an overall characteristic size of 2000km (see 

Paschmann (1998) for definitions). We run this configuration through the box 

of synthetic turbulence, traveling in the ො𝑥 direction, and generate magnetic field 

timeseries of length 392 for each of the four spacecraft. We also track the 

magnetic field on a grid of 50 × 30 points in the 𝑦𝑧-plane surrounding the 

spacecraft configuration at each time step to use as our ground truth for 

comparison with our future reconstructions. We then repeat this pass though the 

plasma cube 18 times (each iteration is an independent portion of the 

simulation domain) to create a large ensemble of measurement data.

 

For each of the 18 sets of timeseries that we 

have generated, we apply our selected magnetic field 

reconstruction technique to the data. Each technique 

reconstructs a 392 × 50 × 30 grid of points that is 

local to the spacecraft positions. To gather the average 

error from each method, we then average over the 18 

iterations through the simulation.

Plasma Simulation

392 × 50 × 30 Reconstructed Grid
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