Estimating the Radial Field Component from LOS Magnetograms:
A Practical Pipeline and Case Study for the September 5, 2022 Backside Event
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Practical Application 1: HMI Data - Sep 5 2017
» The SDO/HMI data pipeline provides both vector and LOS field measurements.

Abstract

The key observational input for data constrained models of the solar corona is the boundary condition for the normal
component of magnetic field, Br, at the coronal base. Frequently, Br 1s derived from LOS magnetograms or maps, as
these are often the most easily (and sometimes only) accessible data. Typically, Br is derived from the LOS compo-
nent of the field, Blos, under the assumption that Blos 1s predominantly radial in the photosphere where it is measured
(e.g. Wang & Sheeley 1992). This geometric approximation often performs well in the weaker field regions of the Sun,
but 1t can be a poor approximation in sunspots, where strongly non-radial fields are clearly present. Another option,

Synopsis
 Extrapolations and MHD models of coronal B fields generally require, at minimum, knowledge of the normal

component of B at the lower coronal boundary, B.. » Using B, derived from vector data as the "reference", we can compare approaches for estimating B, from B .

» Here we try a large complex AR seen =32 ° off the Sun-Earth line: AR 12673 on Sep 5, 2017 at 20:00 UT.
Ref) B, from HMI Vector Data A) B, from the Standard Radial Assumption

 This information usually comes from measurements of the surface field, typically in the photosphere.

* If vector field measurements are either 1) not available, or 2) of sufficient quality, then the normal component
must be estimated from line-of-sight (LOS) magnetograms, By .
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@) Hybrid: B, ,s Matching for Strong B Only
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field measurements of the rapidly evolving source region are LOS magnetograms from the SolO/PHI/FDT instrument,
Longitude

and this region was ~40 degrees away from disk center as seen by SolO at the time of the eruption. By computing the
Br boundary condition in various ways, we illustrate how each technique brings along its own set of 1ssues and how
these may be partially ameliorated using a hybrid approach with localization. We then explore how solutions for the

 This 1s well justified in places where the fields are tightly collimated in the photosphere and mostly vertical.

B) B, os Matching B) B, from B, os Matching Pipeline

global coronal field are impacted by these choices, including non-negligible changes to the footprint of open flux and * Another option is to solve for the 3D potential field that matches the LOS magnetogram. B, BC for Ps ﬂ B, BC for Py
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» This approach 1s more "consistent" with the observations in principle. It can also work better in strong field 61
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Why Match B, s? A Motivating Example
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* This allows one to transition between the Radial Assumption (A) and B, o Matching (B) subject to some criteria.
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* Here we use a smooth mask, M(|B|), to transition between strong and weak field regions on the surface. * B Improves the false PIL issue in A, but it is not gone. Also B introduces a non-zero halo in the weak fields.

* This can possibly provide a "best of both worlds" solution. e C eliminates the weak field halo but otherwise retains the structure of B (great!).
Map to Map to : : : . . :
lon/lat lon/lat * There is no free lunch! If the surface B is non-potential, matching B, o5 with a potential field can only do so much.
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. | Practical Application 2: SolO/PHI - Sep 5 2022
of Doni5L5. Mg =226, =549 = 4| DoniSL5, Dgr: =226, U=549 Goal: Solve for the potential field that matches B, . : . :
min: 2006403, max: 2.006+03 min: -1:34e+03,  max: 1.3%6+03 * On Sep 35, 2022 =15 UT, Solar Orbiter and PSP observed a fantastic CME on the backside of the Sun from Earth.
2 i | i * An open source, high-perfomance, 3D potential field solver. « We wish to model the event, but currently only LOS magnetograms are available from the SolO/PHI instrument.
£ . ‘ : . ' * Finite difference solver, multiple options for grid and outer BCs.  The source region's magnetic morphology was rapidly changing before & after the CME, so we wish to use B g
. . . Ao : ..
2 2 * Parallelized for multi-CPU, multi-GPU, or hybrid architectures. measured just prior to the event. At 4 UT, the AR was south and east, =36 off the Sun-Earth line at this time.
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Iteration . . . .  As before, B Improves the false PIL issue in A. We also see the pattern of open flux near the region is slightly
“ "True" Br is recovered! N Residual is now inconsequential changed from A to B, as is the shape of the HCS at the source surface at 2.0 R,.
170.0 172.5 175.0 177.5 18&_).0 182.5 185.0 187.5 190.0 170.0 172.5 175.0 1775 18&;.0 182.5 185.0 187.5 190.0 | | | | | | | | | | | | | | | | | | | | | o . . . o
Longitude Longitude 1700 1725 1750 1775 Lolz(i)ﬁ?de 1825 1850 1875 1900 1700 1725 1750 1775 Lolz(i)ﬁ?de 1825 1850 1875 1900 1700 1725 1750 1775 Lolz(i)ﬁ?de 1825 1850 1875 1900 ° Cllmlnates the Weak ﬁeld halo. Open ﬂux 1S letUI'C OfA and B’ but the HCS pattem 1S Slmllar tO B (great!).
I , . I ] . EEETT .
_2000 -1 500 -1 000 _500 0 500 1000 1500 2000 _2000 -1 500 -1 OOO _500 0 500 1000 1500 2000 -2000 -1500 -1000 -500 Ga%ss 500 1000 1500 2000 -2000 -1500 -1000 -500 Ga%ss 500 1000 1500 2000 -2000 -1500 -1000 -500 Ga%ss 500 1000 1500 2000

 There 1s no substitute for vector data, but how one estimates B, from B, o5 has consequences for the solution!

Gauss Gauss




