Study of the 3D CME geometry and kinematics using multiple viewpoints and uncertainty analysis.

Eleni Nikou* \& Jie Zhang

George Mason University, Department of Physics and Astronomy, 4400 University Drive, Fairfax, VA 22030, USA

Abstract: Coronal mass ejections (CMEs) are large-scale solar eruptions that carry plasma and magnetic field into the interplanetary space. Studying their initial stages and evolution is of great importance since they are one of the space weather drivers. Most CMEs show a two front structure that consists of the ejecta and the shock. In this work we study the 3D evolution and kinematics of the ejecta in the outer corona using multiviewpoint white light observations. COR2/ STEREO, C2 and C3/ LASCO data are used to study the CMEs. To track the CMEs we use a fitting tool that applies the MPFIT minimization IDL routine and combines multi-viewpoint observations with the Graduated Cylindrical Shell model (GCS model) point cloud to obtain the best values of the geometric parameters of each model along with their uncertainties. The evolution of the propagation direction and size of CMEs along with their uncertainties is analyzed and presented.

3D Forward Modeling of CMEs Graduated Cylindrical Shell Model (GCS model)

Face-on (a) and edge-on (b) cuts of the GCS mode for the CME ejecta, (Thernisien et al. 2006, 2009, 2011). The GCS model depends on six free prameters that are responsible for its shape, defined by the leading edge height (h_{H}), aspect ratio (K) and half angle ($\mathbf{\alpha}$). The propagation direction is defined by the longitude (φ) and latitude (θ) while
the orientation by the tilt angle (γ). Image courtesy, the orientation by the
Thernisien et al. 2011.

How do the GCS free parameters affect the shape of the ejecta?

ve use the MPFIT IDL routine which performs Levenberg-Marquardt least-squares minimization, (Markwardt, C. B. 2009; https://pages.physics.wisc.edul-craigm/idl/fitting.html) in order to find the best fitting values for each of the geometric parameters of the ejecta as described by the GCS model along with their uncertainties. Data from ising this method are presented

Bonus Graphs: How does the size of the July 12, 2012 CME in the inner corona change over time? Early evolution - Height <8 Rs evolution - Height <8 Rs

Conclusions

- Longitude needs at least two viewpoints for an accurate measurement.
- Latitude can not be well determined using only SOHO/ LASCO in the case of a halo CME, but there are better resulis when STEREO is used, especia when the separation angle between the spacecraft and the Earth is -o
- Tilt angle can be detemined using SOHO/ LASCO in the case of hal CMEs, but can not be accurately determined using only STEREC.
- Height measurements show small uncertainty regardless of the number of viewpoints, although having three viewpoints gives us the most accurat measuren
high errors
- Aspect ratio and Half angle need at least two viewpoints for an accurae measurement.
- CMEs in the outer corona expand in a self-similar wav.
- During the early CME evolution, both aspect ratio and half angle increase over time in the current Sun-centered GCS model and this needs to he taken into consideration when focusing on its initial stages.
- More CMEs are being analyzed and the resulits will be available in the near
future.

