Driving the SEPCaster Model with an Automated Solar Active Region Identification and Characterization Module Sailee M. Sawant¹, Gang Li¹, and Meng Jin² ¹Department of Space Science and CSPAR, University of Alabama in Huntsville, Huntsville, AL 35899, USA ²Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA

SCIENTIFIC BACKGROUND

Solar flares and coronal mass ejections (CMEs) can cause disruptive space weather conditions, including geomagnetic storms and solar energetic particle (SEP) events, which may severely damage ground- and space-based technological systems and affect our daily lives. Therefore, we require stateof-the-art forecasting models to accurately predict space weather phenomena. This research aims to develop a physics-based operational SEP forecast model, SEPCaster, for the energetic particle radiation environment in the inner Solar System and Earth's magnetosphere.

SEPCaster MODEL

Figure 2: Potential ARs (red boxes) for the pre-processed NSO/GONG MRBQS magnetogram shown in Figure 1.

ROI DETECTION

- Pre-processes the acquired NSO/GONG magnetogram by applying a Gaussian smoothing filter with a 5 x 5 kernel. This step suppresses the complexity of the magnetic field configuration¹.
- Uses photutils.segmentation², an affiliated package of AstroPy³, to detect positive and negative regions of interest (ROIs) with pixel values greater than pre-defined intensity thresholds (e.g., 1σ , 2σ , and 3σ). We apply a combination of multi-thresholding² and watershed segmentation² techniques to deblend relatively complex ROIs at an intensity threshold of 1σ .
- Computes **flux-weighted centroids** of the detected ROIs. • Implements structural thresholding and removes ROIs smaller than a pre-defined area threshold (e.g., 10 pix^2).

Carrington Longitude [deg]

Figure 1: Pre-processed NSO/GONG MRBQS magnetogram for Carrington Rotation 2268 obtained on March 03, 2023 at 11:04 UTC. Positive and negative ROIs are detected at an intensity threshold of 1σ .

AR IDENTIFICATION

- Implements an **agglomerative hierarchical algorithm**⁴ to identify potential ARs from the detected ROIs.
 - Validates the total number of clusters using the silhouette score⁵, root-square⁶ (RS), and root-mean-square- standard deviation⁶ (RMSSTD) indices.
 - Calculates the RMSSTD/RS ratio (i.e., the fraction of intracluster distances to inter-cluster distances) to determine the optimal number of clusters.
- Uses physics-informed constraints to refine results:
 - Adds/Removes ROIs to/from the acquired clusters using the area-distance correlation criterion.
 - Imposes the **flux-balance mechanism criterion**.
 - Verifies that each cluster contains at least one ROI of opposite polarity.

• Characterizes the identified potential ARs using parameters listed in Table 1 of Steward et. al. (2017). Some of the important parameters include number of flux peaks, total unsigned flux, total area, number of polarity inversion lines (PILs) and strong-gradient PILs (SPILs), length of PILs and SPILs, and longitudinal and latitudinal gradients. • Calculates AR complexity indices using our modified version of correlation dimension mapping⁷ (CDM).

Mason & Uritsky (2022) originally introduced CDM to quantify the irregularities in coronal hole boundaries. We extend the application of CDM to ARs and define our own boundary- and area-based AR complexity indices. This provides an additional way to characterize the identified ARs and helps in determining their potential for eruptive activity.

15 [pixel]

Density

Magnetic Flux I

Figure 3: Examples of (a) boundary- and (b) area-based CDMs for AR1 identified in Figure 2. The boundary- and area-based CDM indices for AR1 are 1.301 and 1.435, respectively.

Based on the equation of the kinetic energy of a CME, we defined the potential CME eruption speed as follows:

where c is a constant, B is the magnetic field in Gauss, A is an effective AR area, and Δ is an effective AR volume. We are currently testing our analysis using the NSO/GONG magnetograms acquired during Solar Cycle 23 and 24.

AR CHARACTERIZATION

BOUNDARY- AND AREA-BASED AR COMPLEXITY INDICES

POTENTIAL CME ERUPTION SPEED

 $V_{
m CME}^2 \; [
m km/s] pprox c \; \left[rac{
m km/s}{
m G}
ight] \; rac{\iint B^2/B_{
m avg} dA_1 \Delta}{\iint dA_2 \Delta}$

 $2 \ln V_{
m CME} \; = \; \ln c + \ln \; / \!\! / \; B^2 / B_{
m avg} dA_1 - \ln A_2 \; .$

REFERENCES

[1] Jin, M., Manchester, W. B., van der Holst, B., et al. 2017, The Astrophysical Journal, 834, 173, doi: 10.3847/1538-4357/834/2/173 [2] Bradley, L., Sipőcz, B., Robitaille, T., et al. 2022, astropy/photutils: 1.5.0, 1.5.0, Zenodo, doi: 10.5281/zenodo.6825092 [3] Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74 [4] Pedregosa, F., Varoguaux, G., Gramfort, A., et al. 2011, Journal of Machine Learning Research, 12, 2825 [5] Rousseeuw, P. J. 1987, Computational and Applied Mathematics, 20, 53, doi: 10.1016/0377-0427(87)90125-7 [6] Sharma, S. 1996, Applied Multivariate Techniques (New York: Wiley), 225, doi: 10.1002/9780470316757 [7] Mason, E. I., & Uritsky, V. M. 2022, The Astrophysical Journal Letters, 937, L19, doi: 10.3847/2041-8213/ac9124

[8] Steward, G., Lobzin, V., Cairns, I. H., Li, B., & Neudegg, D. 2017, Space Weather, 15, 1151, doi: 10.1002/2017SW001595

ACKNOWLEDGEMENTS

This research is supported in part by NASA 80NSSC22K0268 and NSF ANSWERS 149771.

Sailee M. Sawant: ss0415@uah.edu; Gang Li: gangli.uahuntsville@gmail.com; Meng Jin: jinmeng@lmsal.com