

We develop a comprehensive and homogeneous dataset that can serve as a benchmark by integrating Solar Energetic Particles (SEPs) information from three primary catalogs: the National Oceanic and Atmospheric Administration solar proton events list, the geostationary solar energetic particle catalog (Rotti et al., 2022), and the Geophysical Center of the Russian Academy of Sciences. Despite the discrepancies among these catalogs, we conduct visual examinations, cross-referencing with the plasma and magnetic field properties to determine the correct inputs. 590 events are finally identified as SEP events, with a temporal coverage from 1970 up to now. Based on the dataset, we conduct statistical analysis to study the causality relations between the sources of SEP events and their properties detected at Earth. The dataset will facilitate the development of a more comprehensive and robust machine-learning model for the community, enabling more accurate SEP predictions in future space exploration.

Introduction & Motivation

Data

- Solar Energetic Particles (SEPs): Energetic particles (mostly protons) emitted from the Sun and accelerated by solar eruptions, such as flares and Coronal Mass Ejections (CMEs)
- Hazard: Can pose severe radiation risks to space-borne assets and astronauts
- Aim: Predict the occurrence and properties of energetic particles
- Situation: Lack of a comprehensive and homogeneous dataset

	Satellites & Detectors:																
	Cycle (Part of) SC 20)			SC 21		SC 22		SC			
	Year	70	71	72	73	74	75	76	77	78	79-85	86	87-95	96	97-		
	Particles Metero-				IMI Mete	P 6 ero-1	IMP 7, 8 Metero-1				IMP 8 Metero-1	GOES/EPS (Energ					
	Flares	Flares SOLRAD						GOES/XRS (X-Ray Senso SOON (Solar Observing Optical									
	CME																

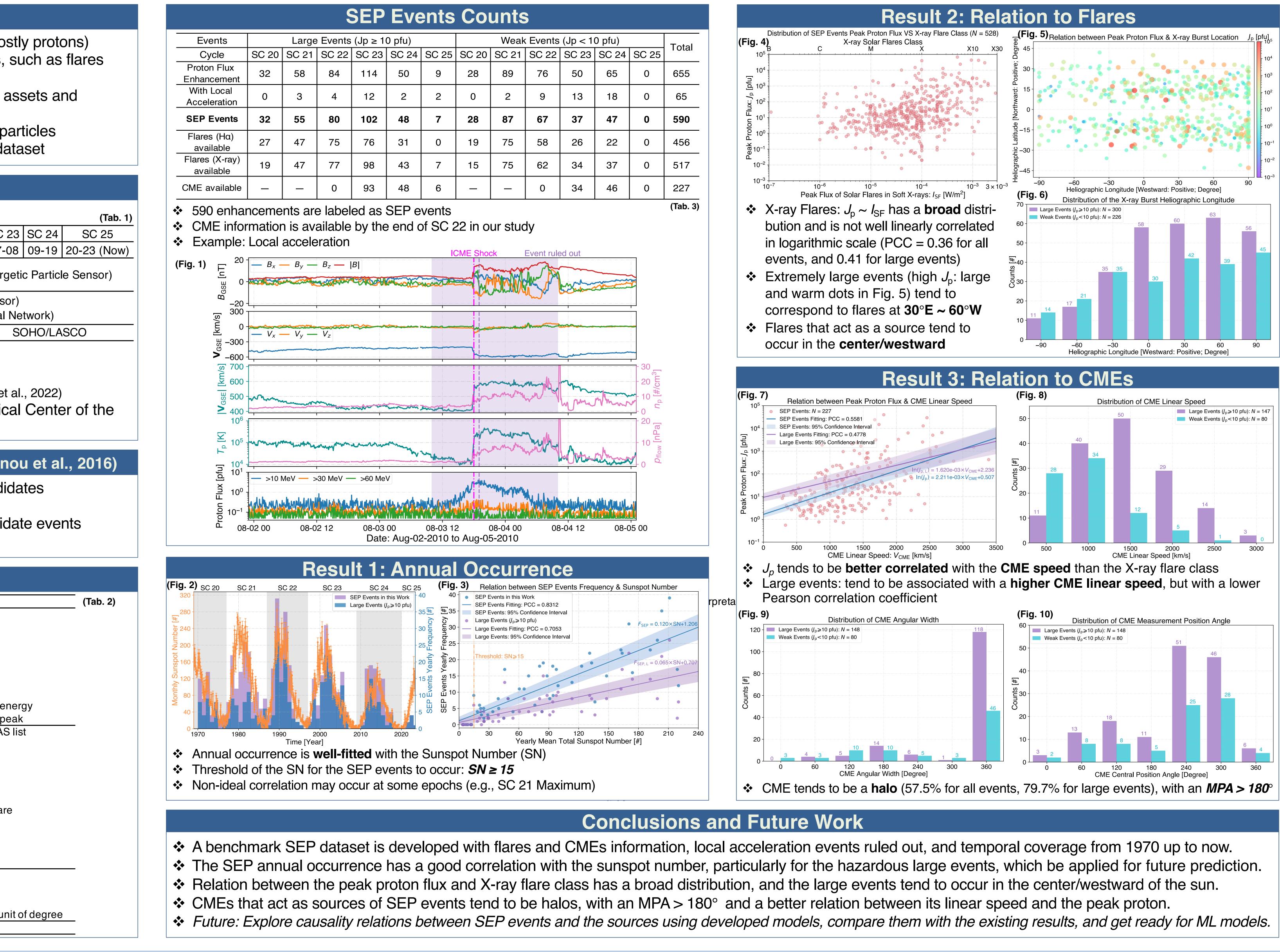
Catalogs integrated:

- ✤ NOAA solar proton events list^[1]
- Geostationary solar energetic particle catalog (Rotti et al., 2022)
- Solar proton events list maintained by the Geophysical Center of the
- Russian Academy of Sciences^[2]

Criteria for Labeling SEP Events (Papaioannou et al., 2016)

- Enhancement Threshold: 0.01 #/cm²/sr/s/MeV for candidates
- ✤ Minimum Peak: 0.5 pfu for possible events
- **Events Interval**: 2 hours between two consecutive candidate events
- Minimum Duration: 2 hours is required

	Co	ntext in our Dataset					
Category	Header	Interpretations					
	Event_ID	Index of the SEP event					
	msk_local	Mask of local acceleration					
	date	Date of the event beginning					
Basic	doy	Day of year of the event beginning					
Information	t_onset	Onset time of the SEP event					
Information	t_max	Time when proton flux reaches its peak					
	Jp	Peak proton flux in unit of pfu					
	Fit_Index_γ	Index for the power-law fitting of flux versus e					
	E_quasi-max	Quasi-maximal energy of the protons at the pe					
	certainty	Certainty of the source, adapted from the RAS					
	t_onset_fH	Start time of the flare in Ha line					
	t_max_fH	Time of the flare maximum in Hα line					
	t_end_fH	End time of the flare in $H\alpha$ line					
	fImportance	Flare Importance in Ha line					
Flares	fClass	Flare X-ray class					
	fLoc	Heliographic longitude and latitude of the fla					
	t_onset_fX	Start time of the flare in X-ray					
	t_max_fX	Time of the flare maximum in X-ray					
	t_end_fX	End time of the flare in X-ray					
	AR_ID	Active region index					
	t_CME	First appearance time of the CME					
CME	V_CME	CME linear speed in unit of km/s					
	Δφ_CME	Angular width of the CME in unit of degree					
	MPA_CME	Measurement position angle of the CME in un					
Others	note	Notes to the event					


References

- Footnotes

A Benchmark Solar Energetic Particle Events Dataset

Weihao Liu (<u>whliu@umich.edu</u>), Lulu Zhao, Tamas Gombosi Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA

Abstract

Rotti, Sumanth, et al. "Integrated Geostationary Solar Energetic Particle Events Catalog: GSEP." The Astrophysical Journal Supplement Series 262.1 (2022): 29. 2. Papaioannou, Athanasios, et al. "Solar flares, coronal mass ejections and solar energetic particle event characteristics." Journal of Space Weather and Space Climate 6 (2016): A42.

^[1] https://www.ngdc.noaa.gov/stp/space-weather/interplanetary-data/solar-proton-events/^[2] http://www.wdcb.ru/stp/solar/solar_proton_events.html.

grant 80NSSC22K0892 (SCEPTER).

Acknowledgments This work is supported by the NASA LWS Strategic Capabilities