

NSE CLEAR

High-Resolution Poisson Bracket Scheme Performance on Solar Energetic Particle and Galactic Cosmic Ray Simulations

Weihao Liu¹ (whliu@umich.edu), Igor V. Sokolov¹, Lulu Zhao¹, Ofer Cohen², Tamas I. Gombosi¹ ¹University of Michigan, Ann Arbor, MI 48109 ²University of Massachusetts Lowell, Lowell, MA 01854

I. Introduction: SEPs & GCRs

SUN MAGNETOSPHERE CIVIL & SHOUR EARTH

II. Method: Poisson Bracket Scheme

Science Question: How can these energetic particles get accelerated and transported in space?

Operational Target: How can we accurately predict the SEP and GCR spectra considering their radation risks?

III. Results: Simulations & Validations

Total variation diminishing (TVD)

- Jokipii 1997) with Poisson brackets, and implement it into M-FLAMPA in SWMF:

We will test this new solver, run for SEPs and GCRs, and study the Forbush decrease.

Chen, X., Giacalone, J., Guo, F., et al. 2024, ApJ, 965, 61 Gibson, S. E., & Low, B. C. 1998, ApJ, 493, 460 Kóta, J., & Jokipii, J. R., 1997, Proc. 25th International Cosmic Ray Conference, 213–216 Parker, E. N. 1965, Planetary and Space Science, 13, 9 Sokolov, I. V., Sun, H., Toth, G., et al. 2023, JCP, 476, 111923 Usoskin, I., Alanko-Huotari, K., Kovaltsov, G., et al. 2005, JGR: Space Physics, 110, A12108

Acknowledgements

 $\tilde{H}_l\left(+\frac{\Delta q_l}{2},+\frac{\Delta p_l}{2}\right)$

 $f(+\Delta q_l)$

(Sokolov et al., 2023)

• $f(-\Delta p_l)$

This work is supported by the NASA LWS Strategic Capabilities grant 80NSSC20K1778, and 80NSSC22K0892 (SCEPTER), and NASA SWxC grant 80NSSC23M0191 (CLEAR). We thank the student financial support from NSF for attending SHINE. We also acknowledge the high-performance computing support from the Pleiades supercomputer provided by NASA.