First Results from NASA's SEP Model Validation (SEPVAL) Effort

Kathryn Whitman, Phil Quinn, Ricky Egeland, Luke Stegeman, Clayton Allison on behalf of the ISEP Project NASA JSC Space Radiation Analysis Group (SRAG) SHINE workshop August 13 – 17, 2024 in Juneau, Alaska

Motivation: The ISEP Project

The Integrated Solar Energetic Proton Event Alert/Warning System (ISEP) project is a collaborative effort to enhance space weather alerting capabilities for SRAG's operations whose mission is to protect astronauts from space radiation.

OORDINATED

- Space Radiation operations
- Expert end users
- Development of SPHINX and
 - validation of models
- Model development

- Human-in-the-loop products
- Provide necessary inputs for models to run on the SEP Scoreboards
- Space weather monitoring

SEPVAL 2023 Challenge and Meetings

Following a multi-year validation effort through the SHINE, ISWAT, and ESWW workshops, the SEPVAL challenge and workshops (US and Europe) were focused on validation and SEP forecasting in ops.

SEP model developers: Provided forecasts and supplementary information Followed the rules of participation

performed the validation

attendees (R2O2R)

SEPVAL 2023 organizers:

30 non-events

like scenario

• Provided a list of challenge time periods and

Defined rules of participation to encourage

Developed the SPHINX infrastructure and

• Made the validation results available to

triggers (flares, CMEs) for 33 SEP events and

modelers to produce forecasts in a real time-

- Development of the **SEP Scoreboards**
- Onboarding and hosting models
- Technical expertise
- Model expertise

and analyses

Small, dedicated ISEP grants, technical support and end-user feedback for focused R2O efforts

Model Developers at **Research Institutions**

Product: SEP Scoreboards

SPAG

Points of Cr

S. CCMC. MRM

https://sep.ccmc.gsfc.nasa.gov/probability/

SEPVAL Website To provide feedback about the forecast/prediction process and the validation results

Forecasts Received for SEPVAL 2023

Model	Developer Point of Contact	Affiliation	Method	Energy Channels (MeV)	Forecasted Quantities	# Forecasts Submitted
ADEPT 1hr, 6hr	Stephen White	US Air Force	Empirical	>10	Time Profile	25
COMESEP flare, flare+CME	Mark Dierckxsens	BIRA	Empirical	>10	Probability, Peak	60, 63
cRT+AE10	Ming Zhang	Florida Institute of Technology	Machine Learning	>10	Probability	63
ENLIL+SEPMOD	Janet Luhmann	UC Berkeley	Physics-based	>10, >30, >50, >100	Time Profile	63
Lavasa	Eleni Lavasa	National Observatory of Athens	Machine Learning	>10	All Clear	58
MagPy	David Falconer, Tilaye Tedesse	UA Huntsville, NASA JSC SRAG	Empirical	>10	Probability	2182
MEMPSEP Mean, Median	Subhamoy Chatterjee	Southwest Research Institute	Machine Learning	>10	Probability	60, 60
MFLAMPA	Igor Sokolov	University of Michigan	Physics-based	>10, >30, >50, >100	Time Profile	9
PPS (SFS Update)	Stephen White	US Air Force	Empirical	>10, >100	Peak Flux	61
SEPSAT	Ming Zhang	Florida Institute of Technology	Physics-based	>10, >100	Time Profile	64
SEPSTER	Ian Richardson	University of Maryland	Empirical	>10, >30, >50, >100	Peak Flux	64
SEPSTER2D	Alessandro Bruno	NASA GSFC	Empirical	>10, >30, >50, >100	Peak, Fluence	60
SPREAdFAST	Kamen Kozarev	Bulgarian Academy of Sciences	Physics-based	>10, >30, >50, >100	Time Profile	8
SPRINTS 0-24 hour	Alec Engell	NextGen	Machine Learning	>10, >30, >50, >100	Probability, Peak	15263
STAT	Jon Linker	Predictive Science, LLC	Physics-based	>10, >30, >50, >100	Time Profile	6
UMASEP-10, -100	Marlon Nunez	University of Malaga	Machine Learning, Empirical	>10, >30, >50, >100	Peak, Start	27572, 32240
UNSPELL	Sigiava Alminalragia-Giamini	SPARC	Machine Learning	>5 (validated to >10)	Probability	61
ZEUS+iPATH	Gang Li, Junxiang Hu	UA Hunstville, NASA GSFC	Physics-based	>10, >30, >50, >100	Time Profile	60
SAWS-ASPECS	Athanasios Papaioannou	National Observatory of Athens	Statistical, Empirical, Physics-based	>10, >100	Probability, Peak, Time Profile	57 – 63 for 42 submodels

SPHINX Validation Framework

SEPVAL 2023 First Results

>10 MeV, 10 pfu, Real-Time-like Forecasts

Solar Particles in the Heliosphere validation INfrastructure for SpWx (SPHINX) **SPHINX Goal:** A generalized, automated tool that can validate any kind of forecasted quantity from any type of solar energetic particle (SEP) prediction model.

Developers: Kathryn Whitman, Ricky Egeland, Luke Stegeman, Clayton Allison (NASA JSC SRAG)

Github: https://github.com/ktindiana/sphinxval

Validation in Visually Interactive Displays (VIVID) **VIVID Goal:** Web application for displaying the validation results of SPHINX in a dashboard of

interactive plots and tables **Developer:** *Phil Quinn (NASA JSC SRAG)*

Availability: Both will be hosted at CCMC in the future.

SEP Scoreboards, Gannon Storms May 2024

		Alarms	Negatives		Forecasts		Ratio				Median	SEFMOD (62) SF5-Update (59) SEFSTER2D CME (59)
avasa	18	5	24	6	53	0.75	0.22	0.96	0.58	0.58	1.50 -	Lavasa (53) SEPSTER (Parker Spiral) (62) SEPSAT (62)
agPy*	3	2	27	29	62	0.12	0.33	0.18	0.05	0.05	1.25 -	ZEUS+IPAIH_CME (60) SAWS-ASPECS flare (59) SAWS-ASPECS flare + CME (SOHO) (59) UNSPEIL flare (56)
PS SFS-Update	27	23	7	2	59	0.93	0.46	1.7	0.16	0.16	1.00	UMASEP-10 single (61) MagPy_SHARP_HMI_CEA single (61) SPRINTS Post Eruptive 0-24 hrs single (59)
AWS-ASPECS flare + CME SOHO)	26	21	9	3	59	0.90	0.7	1.62	0.20	0.20		0 .97
AWS-ASPECS flare + CME GOHO) electrons	24	6	24	4	59	0.90	0.45	1.62	0.20	0.19	0.50 -	
AWS-ASPECS flare	22	11	17	9	59	0.71	0.39	1.06	0.32	0.32		
AWS-ASPECS flare electrons	19	3	25	11	58	0.63	0.14	0.73	0.53	0.52		
EPMOD	19	4	26	13	62	0.73	0.17	0.72	0.46	0.46	0.00 -	
EPSAT	27	17	13	5	62	0.84	0.39	1.38	0.28	0.28	Rate Alarm Ratio	Blas Irue Heidke Skill Skill Statistic Score Metrics
EPSTER	20	6	25	11	62	0.65	0.23	0.84	0.45	0.45	Hit Rate: % SEP events correctly foreca	ast as yes
EPSTER2D	26	15	15	3	59	0.90	0.37	1.4	0.40	0.39	False Alarm Ratio: Out of all the yes for	recasts, what % were false alarms?
PRINTS Post-Eruptive 0-24 hrs	20	8	22	9	59	0.69	0.29	0.97	0.42	0.42	True Skill Statistic: How well can the f	orecasts separate yes and no events?
MASEP-10**	29	1	29	2	61	0.94	0.03	0.97	0.90	0.90	Heidke Skill Score: How accurate is th	e forecast compared to random chance?
NSPELL flare	21	12	18	5	56	0.81	0.36	1.27	0.41	0.40	[^] Unlike all other models listed he does not use eruption information	re, MagPy uses only magnetograms and nas input.
EUS+iPATH	20	4	25	11	60	0.65	0.17	0.77	0.50	0.50	**UMASEP is the only model liste	d here that uses in situ proton flux as input

Probability Forecast

Area Under the Curve

Best Score = 1

0.72

0.77

0.87

0.55

0.74

0.72

0.86

0.83

0.92

0.71

0.88

0.62

0.75

Receiver Operating Characteristic

True Positive Rate (Probability of Detection) as a function of False Positive Rate (Probability of False Alarm) by applying varying probability threshold values to a probability model to create a binary classifier.

SEP Scoreboards during the May 2024 Storms

Leading up to the SEP events, models became "jittery." Probability and peak flux predictions increased. Light grey shading = SPE. Dark grey = ESPE.

Automated Validation with SPHIN

SPHINX takes the approach that model output is considered forecast if all data input into the model is earlier in time t the observed phenomenon.

Criteria related to the timing of flares/CMEs and observed pro flux threshold crossings are applied to associate forecasts observed SEP events.

SPHINX correctly matched forecasts to all SPEs and ESPE.

X	Model	ESPE (>100 MeV) 2024-05-11 02:10:00	Advanced Warning Time A subset of SEP Scoreboard
ed a	iPATH CME	Miss	models make forecasts for >100
than	SEPSTER	Miss	MeV, 1 pfu. 3 models correctly
oton with	SEPSTER2D	Miss	forecasted a hit for the ESPE.
	SEPMOD	Hit (forecast not produced in RT)	AWT is shown in the table.
	SAWS-ASPECS flare	-25 minutes	Negative time indicates the
•	SPRINTS Post Eruptive 0-24 hrs	29.55 minutes	forecast was issued after the
	UMASEP-100	9.35 minutes	threshold was already crossed.

	Onset Peak Flux							
	Corr	elation		Bias		Accuracy		
Model	Linear Regression Slope	Pearson Correlation Coefficient (Log)	Mean Log Error (MLE)	Median Log Error (MedLE)	Mean Absolute Log Error (MALE)	Median Absolute Log Error (MedALE)	Median Symmetric Accuracy (MdSA)	
COMESEP flare+CME	0.23	0.29	0.01	0.00	0.57	0.43	1.70	
COMESEP flare only	0.25	0.36	-0.15	-0.04	0.51	0.36	1.30	
SEPMOD	0.44	0.43	-0.08	0.15	0.62	0.47	1.95	
SFS-Update	0.24	0.39	-0.43	-0.36	0.60	0.43	1.67	
SEPSTER2D CME	0.78	0.60	0.00	0.09	0.55	0.39	1.47	
ADEPT-AFRL 1hr	0.22	0.27	-0.16	0.07	0.48	0.25	0.79	
ADEPT-AFRL 6hr	0.74	0.82	-0.12	0.11	0.36	0.28	0.91	
SEPSTER (Parker Spiral)	0.80	0.61	-0.48	-0.43	0.68	0.65	3.46	
SEPSAT	0.23	0.24	0.02	0.05	0.68	0.63	3.29	
ZEUS+iPATH_CME	0.63	0.59	0.35	0.33	0.59	0.48	2.04	
SAWS-ASPECS flare + CME (SOHO) 50%	0.33	0.21	0.29	0.77	0.99	1.00	8.84	
SAWS-ASPECS flare + CME (SOHO) 90%	0.44	0.21	1.47	2.11	1.91	2.24	172.3	
SAWS-ASPECS flare 50%	0.60	0.35	-0.70	-0.81	1.15	1.27	17.51	
SAWS-ASPECS flare 90%	1.03	0.41	0.38	0.86	1.50	1.62	40.84	
UMASEP-10	0.70	0.82	0.16	0.18	0.36	0.29	0.93	

High Correlation Peak Intensity Correlation Pearsons Correlatio Coefficient: 0.824 Linear Regression Slope: 0.698 y-intercept: 0.803 - 1:1 Line UMASEP-10

Brier Score

Best Score

0.23

0.25

0.17

0.35

0.20

0.23

0.16

0.26

0.23

0.25

COMESEP flare+CME

COMESEP flare only

MEMPSEP Mean

MEMPSEP Median

PPS SFS-Update

SAWS-ASPECS flare

UNSPELL flare

SAWS-ASPECS flare electrons

SPRINTS Post-Eruptive 0-24 hrs

SAWS-ASPECS flare + CME SOHO 0.28

SAWS-ASPECS flare + CME SOHO 0.11

cRT+AE10

MagPy

Brier Skill Score

Best Score = 1

0.51

0.46

0.65

0.03

0.49

0.40

0.67

0.40

0.75

0.48

0.52

0.34

0.42

Mid Correlation

• •

Peak Intensity Correlat

Low Correlation

Pearsons Correlation Coefficient: 0.295

Linear Regression – Slope: 0.226 y-intercept: 1.567 – 1:1 Line

COMESEP

flare+CME

eats

sults are derived de array of SEP vith a variety of es, inputs, and

many subtleties n making crossmparisons which ldressed in a journal

oling affects outcomes

challenge event list erent kind of story lation of real time in the SEP rds

Future Focus

What do the validation results say about the predictive physical characteristics being captured by the models? What works and what is missing?