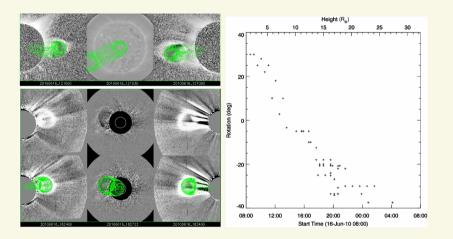

EXPLORING THE ROOT CAUSE OF CME ROTATION IN THE HELIOSPHERE


Motivation

Magnetic Flux Ropes (MFRs) are fundamental solar and heliospheric magnetic structures. They are often identified within Interplanetary Coronal Mass Ejections

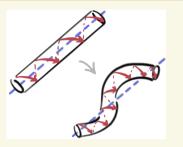
within Interplanetary Coronal Mass Ejections Adapted from Demoulin & Dasso (ICMEs).

Case Study: June 16-20, 2010 CME

The first direct detection of a rotating coronal mass ejection (CME) in the middle corona (5-15 R sun) by Vourlidas et al. (2011). The reported CME rotation rate is 60° day⁻¹.

Methodology

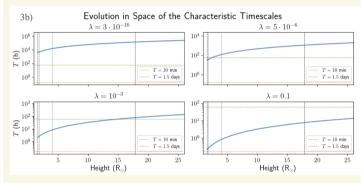
Linear Stability Analysis (LSA) Linton et al. (1996):


- Cylindrical symmetry for the magnetic field, small displacement perturbation applied to the system that allows for linearized equations of motion
- Euler-Lagrange equation: gives the perturbation that minimizes the energy of the system

Stability criterion:

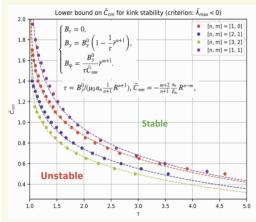
The system is kink stable if, and only if, the perturbations that solve the Euler-Lagrange equation and satisfy the boundary condition, do not grow exponentially with time, for any wavenumber.

The LSA using the circular-


When the twist of the magnetic field lines in a MFR exceeds a critical threshold, a **plasma instability of the kink-type** can take place. This causes the MFR axis to become a helix itself, which

would be seen as a **MFR rotation** Illustration by M. Floridoin the lower-middle corona.

Results


From the LSA, the **growth rate** σ can be determined via the stationary points of the generalized energy $U(\xi) = W(\xi) + \lambda I(\xi)$, when one restricts the optimization to Fourier displacements $\xi(r, \theta, z) = [\xi_r(r), \xi_{\theta}(r), \xi_z(r)]e^{i(\theta+kz)}$. The relationship to the Lagrange multiplier is: $\lambda = \sigma^2$. The **characteristic timescale of the instability**, T_c , indicates the time it takes for the instability to significantly affect the flux rope's macro-structure and is defined as $T_c = 1/\sigma$. For the CME under study, $\lambda = 3 \cdot 10^{-10} [s^{-2}]$, which falls in the stable regime.

 T_c as a function of the distance from the Sun and different λ . The vertical lines indicate the time interval of the observed rotation.

Conclusions and Future Work

- Our analysis places the CME observed in June 16-21, 2010, in the improbable range for the onset of a kink-type instability throughout the interplanetary medium. Therefore, we can reject the hypothesis that its rotation was due to an internal instability.
- The rotation might be caused by external factors which will be addressed in a future study.

cylindrical (CC) MFR model by Nieves-Chinchilla et al. (2016) allows us to determine if a MFR is stable/unstable. Colored lines are the boundary values of $C_{n,m}$ (internal force-freeness in the CC model) at fixed τ (twist in the CC model) between the stable and unstable regimes of the MFR. See: Florido-Llinas et al. 2020. ► We plan to investigate other events with visible rotations, especially at distances near the Sun (see also: Nieves-Chinchilla et al. (2022)).

Acknowledgements

- This work was carried out by Miriam Lorenzo Laguno during her internship at NASA GSFC.
- T.N.C. and L.A.B. thank the support from the NASA Solar Orbiter, STEREO, PSP missions, LWS-80NSSC19K0069, and Heliophysics Internal Funds (HIF) program.

Laura A. Balmaceda^{1,2}, Miriam Lorenzo Laguno^{*}, Teresa Nieves-Chinchilla²

lbalmace@gmu.edu, miriamll2001@gmail.com, teresa.nieves@nasa.gov ¹George Mason University / ²NASA GSFC