Electron heating at Earth’s quasi-perpendicular bow shock measured by MMS: a
relative comparison of compression and magnetic pumping
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Shock acceleration requires seed population

» Particle acceleration at shocks is widely accepted to be driven by | ELE C}Roa ANRRAYE
V " \ FORESI:LOCK WML A
diffusive shock acceleration (DSA), which requires a seed S - | |l
population of particles pre-accelerated to moderately high energies.

, Acceleration of this seed population, known as the “injection
problem”, is particularly difficult for electrons that need high
frequency waves to scatter.

lllustration of passmg and trapped

9 Magnetic pumping is a viable acceleration/heating mechanism for  particles in compressional
magnetic fluctuations upstream of

producing a seed population of electrons. Earth’s bow shock

Magnetic pumping heats particles

9 For particles with conserved adiabatic invariants p = mvi /(2B) & j = ¢ mu)d¢,

~ nB
pressures parallel and perpendicular to the magnetic field follow the CGL —» bl

pj ~ n°/B?

Under the influence of cyclic magnetic perturbations and particle scattering that induces

pitch angle diffusion, non-adiabatic energization of particles occurs, termed magnetic pumping.
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9 We model this process by separating the distribution function in velocity space into the
parallel passing (+), antiparallel passing (-), and trapped populations (T):

Krook-like pitch angle scattering;
R” is fraction of phase space volume of passing;
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9 The slow evolution of f from magnetic pumping is modeled as speed e
diffusion in velocity space only acting on trapped particles, with an f
efficiency per pump cycle, &, that depends on the ratio of scattering H
to pump frequency and strength of magnetic fluctuations.

vCr) 1 vCx /@ v\ 0.02v/w [ (6B\*" 6B\ "°
’ (T) 4 Z A x Car &Mk = TR <(B> e (ﬁ)

1 term
2 terms
5terms |

ot
AB/B,=

4t

-1 0 log,(vCy/w) 1

CGL-like behavior observed in bow shock
oB fluctuations

» Below is MMS3 data from a quasi-perpendicular shock crossing with shock
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normal angle 65, ~ 84°. Distributions in foreshock are parallel/perpendicularly 3 g2
enhanced at minima/maxima of the magnetic field strength. P
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Pumping explains MMS bow shock data

¢ For evaluation of TP-boundaries and evaluation of heating as < _ mv’
a function of energy, it is convenient to switch to constant of | 2
: : G 1 : ,LLBO UiBO
motion coordinates, energy and a “pitch-angle” coordinate A. A = < ~ g
SW strahl energization of A v
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7shock, s, to more easily apply model to spacecraft data.
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9 We directly evaluate the total | reing aomered o TS _
change in log / (blue) and the | compression /a _
contribution from compression |
(green) from the data, while the effect |
of magnetic pumping (red) is _
optimized by the scalar factor 27N, & _
and added to compression to fit the .
blue curve. e (1) = % y

E ]
31, [(0l\* O ' | ' |
Hypump(15) = 4 (2[£ + (i) + al—gﬁ) 15 2 10g10<g/62v5) 3 35

Additionally, the log-form of the passing equations can be rearranged to get an

expression for the shock-width normalized electron mean free path.
8[}& 1 - R” ~ ~_|_ - 14
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_ pimping more important 9 In many events (taken from database
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TR eg | B °° compiled by Lalti et. al. 2022), the contribution
g3 go ® 1l {08 p from compression overtakes the total heating
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9 Since compression term is the
limit of high scattering, we add
velocity advection terms from
Vlasov equation to capture physics
of thermal streaming in our model.

A loglo(f/fup)

05 | | | | | |

1 1.5 2 2.5 3 3.5
logyy(E/eV)
MM3 on January 3, 2020 over a shock crossing with 05, ~ 65°.

of 1—R 1 Here, the dashed red (pumping) and dashed green (compression)

&Jsr” X ” (fT — f+||) V- (Vf_|_||) include effects of thermal streaming.
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--------------------------------------------------------------------

assume trapped particles have zero spatial : — —[lBls! (Hcomp(l?)>s + (Hpump(l?»s 2w N, G .
divergence for advection; apply divergence theorem i |
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