Poster No.	Presenting Author	Afiiliation	Title	Working Group	Sessions
001	E. Sanchez-Gacia	National Autonomous University of Mexico	How the Geomagnetic Storm of May 10 was observed by the LANCE instrument network in Mexico	Other	2024 Student Poster
002	India Jackson	Georgia State University NJIT-Center for Solar Terrestrial	Helio-Lite: A Cost-Effective, Scalable Cloud Framework for Advancing Heliophysics Research Imaging Spectroscopy Shows False "U-Burst" caused by Atmospheric Distortions Above	Other	2024 Student Poster Session 10. Seeing the Unseen: Sun in radio wavelengths/Session 9. Addressing your SHINE Science
003	Brian O'Donnell	Research Jet Propulsion Laboratory, California	The NASA Heliophysics Mission Design School: principles, accomplishments and	Other	Session 20. The Things I Wish the Community Would Stop Getting Wrong: Facilitating Knowledge
004	Olga Verkhoglyadova	Institute of Technology Georgia State University; University of	diversity	Other	Dissemination (Town Hall)(Session 21. Small Missions Big Results
005	Fallon Konow Bishwas L. Shrestha	Rome Tor Vergata Princeton University	GATES: A Network for Synoptic Space Weather Observation Anomalous Behavior of Solar Wind at Distant Interplanetary Shocks	Other Other	Session 21. Small Missions Big Results/2024 Student Poster Session 22. Pickup Ions in the Heliosphere and Beyond
007	Carlos Perez-Alanis	NASA Goddard Space Flight Center / George Mason University	Implications and causes in the identification of Large Scale Structures from operations to research	Other	Session 6. Modern approaches to investigate larger scale structures in the heliosphere Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
008	Hafijul Islam	University of New Hampshire	Temporal Variation of Scaling Factor of Secondary Neutral Interstellar Helium Observed by IBEX-Lo	Other	
009	Mel Abler	Space Science Institute & amp; UCLA	Laboratory Study of Alfven Wave Steepening	Other	
010	William Ryan	West Virginia University	Theory and Simulations of the Whistler Anisotropy Instability for Space Applications	Other	
011	Jorge R. Padial Doble	Vanderbilt University	Automatically Labelled EUV and XRay Incident Solarflares (ALEXIS Solar Flare Catalog)	WG1: Solar	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays/Session 15. Machine learning-based predictions of solar flares and SEP events/Session 4. Beyond the Standard Flare Model
012	Brandon Lazard	University of California, Los Angeles	Investigating the Role of Diffusivities in Solar Convection Modeling	WG1: Solar	2024 Student Poster
013	Evan Shimoun	University of Michigan	Using Solar Orbiter to Examine Ion Charge State Ratios in Comparison to their Radial Distance	WG1: Solar	2024 Student Poster
014	Gabriela Gonzalez	CU/LASP	Improving the Spectral Resolution and Wavelength Scale of SDO/EVE MEGS-A Flare Observations	WG1: Solar	2024 Student Poster
015	Gergely Koban	University of Michigan	Using FORWARD for Global Coronal Model Validation Across Solar Cycles	WG1: Solar	2024 Student Poster
016	Griffin Goodwin	Georgia State University Institute for Astronomy, University of	The Impacts of Magnetogram Projection Effects on Solar Flare Forecasting Estimating the Maximum Possible Magnetic Energy Storage of AR 11158 prior to its X2.2	WG1: Solar	2024 Student Poster
017	Jonathan Lee	Hawaii at Manoa	Flare	WG1: Solar	2024 Student Poster
018	Kara Kniezewski	Air Force Institute of Technology	A Comparative Study on the Divergent Eruptive Behaviors of AR 12192 and AR 13664	WG1: Solar	2024 Student Poster
019	Tamima Saba Varun Mahendra	Georgia State University	Relation between Two-Ribbon Topology and Flare Eruptivity	WG1: Solar	2024 Student Poster
020	Chaturmutha	Georgia State University	Probing the Atmosphere of the Sun-As-A-Star Using Seismic Waves Simulation of Coronal Mass Ejection Based on the Titov-Demonlin Model: Flux Rope	WG1: Solar	2024 Student Poster
	Xianyu Liu	University of Michigan	Insertion, Relaxation, and Eruption Triggered by Flux Cancellation	WG1: Solar	2024 Student Poster Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to
022	Andrew Leisner	George Mason University	Coronal Hole Model Validation with Synchronic Maps	WG1: Solar	Magnetic Fields and Eruptions 2024 Student Poster Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to
023	Gregory Szypko	Rice University	How is the particle population seeded into the solar wind?	WG1: Solar	Magnetic Fields and Eruptions 2024 Student Poster
024	Caroline L. Evans	University of Colorado Boulder	Quantifying how surface complexity influences properties of the solar corona and solar wind	WG1: Solar	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Exploring/Session 17. Making Cross-Heipspheria da Cross-Scale Connections with Global Modeling and Observations/Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere/Session 6. Modern approaches to investigate larger scale structures in the heliosphere/Session 7. Achieving coronal and solar wind science Course with multi-mission collaboration
025	James Crowley	National Solar Observatory; CU Boulder	Magnetic Insights from Vector Magnetogram Inversions of Hinode SP	WG1: Solar	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Exploring Session 17. Making Cross-Heipospherica and Cross-Scale Connections with Global Modeling and Observations/Bession 3. Small-scale magnetism and dynamics in the lower solar atmosphere/Session 6. Modern approaches to investigate larger scale structures in the heliosphere/Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
026	Charles Fred Driscoll	University of California, San Diego	Plasma Sheath Electric Fields and Jets of the Sun and Solar Wind	WG1: Solar	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Eruptions[Session 18, Multiscale Nature of Plasma Turbulence from Intertial Scales to Dissipation Range[Session 19. Unraveling Turbulence Dynamics in the Very Local Interstellar Medium (VLISM) and the Connection with Heliophysics[Session 2. Understanding Variations in Sun's Global Flows[Session 20. The Things I Wish the Community Would Stop Getting (Wrong: Facilitating Knowledge Dissemination (Town Hall)[Session 3. Small-scale magnetism and dynamics in the Iower solar atmosphere]Session 4. Beyond the Standard Flare Model Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
027	Nian Liu	New Jersey Institute of Technology	Daba-based MHD Simulation for Consecutive Flare Eruptions in Active Region 13663	WG1: Solar	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Eruptions]Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere]Session 4. Beyond the Standard Flare Model]Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
0.20	Pyan Franch	National Solar Observatory	-	WG1: Solar	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Explorant/Session 4. Beyond the Standard Flare Model Session 5. Flare-& amp; CME- Associated Evolution of Active-Region Coronal Currents[Session 8. Unflying the Physical Understanding of
028	Ryan French	National Solar Observatory Ann Arbor Skyline High School,	Possible in-situ evidence for plasmoids in a reconnecting flare current sheet	WG1: Solar	CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
029	Liana Zhou	Michigan; University of Michigan	First Report of Solar Radio Burst Events Detected by the SunRISE Ground Radio Lab	WG1: Solar	Session 10. Seeing the Unseen: Sun in radio wavelengths

C)30	Bin Chen	New Jersey Institute of Technology	Owens Valley Solar Arrays: An Integrated Community Facility for Solar and Space Weather Research	WG1: Solar	Session 10. Seeing the Unseen: Sun in radio wavelengths Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays[Session 13. Solar Energetic Particle (SEP) acceleration near the Sun]Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations[Session 21. Small Missions Big Results[Session 4. Beyond the Standard Flare Model[Session 5. Flare-&: CME-Associated Evolution of Active-Region Cortonal Currents[Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration] Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/Sol0 Era[Session 9. Addressing your SHINE Science Questions with Radio Data
0)31	Surajit Mondal	New Jersey Institute of Technology	Mysterious low frequency transients discovered by the Owens Valley Long Wavelength Array	WG1: Solar	Session 10. Seeing the Unseen: Sun in radio wavelengths Session 6. Modern approaches to investigate larger scale structures in the beliosphere(Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era[Session 9. Addressing your SHINE Science Questions with Radio Data Session 10. Seeing the Unseen: Sun in radio wavelengths Session 7. Achieving coronal and solar wind
0)32	Gilly	Southwest Research Institute	EMToolkit - A python dashboard for DEM analysis of image slices	WG1: Solar	science closure with multi-mission collaboration Session 9. Addressing your SHINE Science Questions with Radio Data
0)33	Georgia de Nolfo	NASA Goddard Space Flight Ctr	What Solar Neutrons Can Tell Us About Particle Acceleration?	WG1: Solar	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
a)34	Wei Liu	Lockheed Martin Solar and Astrophysics Laboratory and Bay Area Environmental Research Institute	Large-scale EUV Waves in the Solar Corona Associated with CMEs and/or Flares	WG1: Solar	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
)35	MohammadReza EskandariNasab	Utah State University	Impacts of Data Preprocessing and Sampling Techniques on Time Series-based Solar Flare Prediction	WG1: Solar	Session 15. Machine learning-based predictions of solar flares and SEP events
		Joao Felipe Sousa Pereira		Solar Flare Prediction using Deep Learning Models	WG1: Solar	Session 15. Machine learning-based predictions of solar flares and SEP events/2024 Student Poster
		Nat Mathews	NASA GSEC	The Plasma-Prescribed Active Region Extrapolation Dataset	WG1: Solar	Session 15. Machine learning-based predictions of solar liates and SEP events[2024 Student Poster Session 15. Machine learning-based predictions of solar flares and SEP events[Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
)38	Evan Yerger	Space Science Center	Constraints on proton cyclotron heating in the solar wind	WG1: Solar	Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating
		Parisa Mostafavi	Johns Hopkins University Applied Physics Lab	Non-Thermal Effects on Solar Wind Ions: Insights from Parker Solar Probe and Solar Orbiter Observations	WG1: Solar	Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating[Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
		Daniel Mendoza	•	Coronal Field-Line Extrapolation Techniques: Validation and Footpoint-Tracing		Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and
			University of Colorado Boulder	Uncertainties A New Generation of 1D Models of Coronal Heating and Solar Wind Acceleration	WG1: Solar	Observations Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and
		Steven Cranmer	University of Colorado Boulder	Powered by Waves, Turbulence, and Interchange Reconnection Toward a Consensus for Multi-Sourced Photospheric Magnetic Field Cross-Calibration	WG1: Solar	Observations Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and
		Yang Liu	Stanford University	and Producing Radial Field Synoptic Charts AWSoM MHD Simulation of a Solar Active Region: Statistical Analysis of Alfven Wave	WG1: Solar	Observations Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and
0)43	Tong Shi	SETI Institute New Jersey Institute of Technology,	Dissipation and Reflection, Scaling Laws, and Energy Budget on Coronal Loops	WG1: Solar	Observations 2024 Student Poster
_		Krishnendu Mandal	Newark, New Jersey, USA	Helioseismic Properties of Dynamo Wave Signatures in Solar Zonal Flow	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
_)45	M. Cristina Rabello Soares		Exploring Substructure of the Near-Surface Shear Layer of the Sun	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
0)46	Richard Bogart	Stanford Univeristy	Structured anomalies in near-surface flows revealed by ring-diagram analysis	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
0)47	Roger Ulrich	Department of Physics and Astronomy, University of California at Los Angeles	Magnetic Field and Doppler Velocities on the Solar Surface from the 150-foot Tower Telescope on Mt. Wilson	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
0)48	Shea Hess Webber	Stanford University	Consequences of Fields and Flows in the Interior and Exterior of the Sun (COFFIES)	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
0)49	Sushant S. Mahajan	Stanford University	Long Term trends in Sun's Global Flows: Meridional Flow and Torsional Oscillation	WG1: Solar	Session 2. Understanding Variations in Sun's Global Flows
				An Overview of the Measuring Directivity to Determine Electron Anisotropy (MeDDEA)		
)50)51	Niharika Godbole	Space Flight Center (GSFC)	CubeSat Observatory	WG1: Solar	Session 21. Small Missions Big Results
	131	Karin Dissauer	NorthWest Research Associates The University of Alabama in	Unveiling the uniqueness of small-scale solar flare precursors A Confirmed Second Sunspot Light Bridge Heated by Cowling Heating: Analysis Using	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere
_		Mehmet Sarp Yalim	Huntsville	NASA/IRIS Data	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere
0)53	Wenda Cao	Big Bear Solar Observatory	New Developments in Instrumentation at Big Bear Solar Observatory (BBSO)	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere
0)54	Dennis Tilipman	University of Colorado, Boulder / NSO	How Do Spatial Resolution and Cadence Affect the Accuracy of Electric Field and Poynting Flux Inversions?	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere 2024 Student Poster
0)55	Silvina Guidoni	American University	Self-consistent Formation and Resistive Instability of a Simulated Flare Current Sheet	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere Session 4. Beyond the Standard Flare Model Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
		Alin Razvan Paraschiv	National Solar Observatory	Incorporating a method for inferring solar coronal 3D magnetic fields using IQU-only spectropolarimetry into the CLEDB package.	WG1: Solar	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere Session 6. Modern approaches to investigate larger scale structures in the heliosphere
		Momchil E. Molnar		Measuring CME magnetic fields through their prominences: He I 1083 nm as unsaturated		Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere Session 6. Modern
0	137	Momchil E. Moinar	High Altitude Observatory	Hanle diagnostic of the coronal magnetic field	WG1: Solar	approaches to investigate larger scale structures in the heliosphere Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere Session 7. Achieving
0)58	Mari Paz Miralles	Center for Astrophysics Harvard & Smithsonian	Thermal and Magnetic Properties of Coronal Cavities in Pseudostreamers and Helmet Streamers	WG1: Solar	Coronal and solar wind science closure with multi-mission collaboration(Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
0)59	Jiong Qiu	Montana State U.	Analyzing and Modeling the Shear Evolution of Post-Reconnection Flare Loops (PRFLs)	WG1: Solar	Session 4. Beyond the Standard Flare Model
		J. Lorincik	BAERI/LMSAL	Analyzing and modeling the Shear Evolution of Post-Reconnection Flare Loops (FRELS) Probing progression of flare heating through the lower solar atmosphere via high cadence IRIS spectroscopy	WG1: Solar	Session 4. Beyond the Standard Flare Model Session 4. Revond the Standard Flare Model
-		Maria D. Kazachenko	University of Colorado Boulder /	Toward Improved Understanding of Magnetic Field Evolution during Solar Flares: Analysis	3	
U	101	warta D. Nazachenko	National Solar Observatory	of Observation Proxies in Realistic Data-Driven Flare Simulation	WG1: Solar	Session 4. Beyond the Standard Flare Model

		University of Colorada Davidar			
		University of Colorado Boulder, National Solar Observatory,			
		Laboratory for Atmospheric and Space			
062	Marcel F. Corchado-Albelo	Physics	Spatial Complexity of Flare Ribbon Boundaries	WG1: Solar	Session 4. Beyond the Standard Flare Model 2024 Student Poster
063	Brian T. Welsch	University of Wisconsin - Green Bay	How Does Magnetic Twist at the Solar Photosphere Evolve Prior to Large, Eruptive Flares?	WG1: Solar	Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
000	Bridit 1. Woldon	Lockheed Martin Solar and	COLLISIONAL SHEARING: A POSSIBLE PROCESS BEHIND RECURRENT		
064	Georgios Chintzoglou	Astrophysics Lab	EXPLOSIVE ACTIVITY IN SOLAR ACTIVE REGIONS	WG1: Solar	Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
065	Xu Yang	BBSO/NJIT	X1.0 Flare with Filament Eruption and Moving White Light Flare Ribbons	WG1: Solar	Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
066	Kenny Kenny	University of Colorado Boulder	WISPR translational tomography: extracting locations of nearby coronal rays	WG1: Solar	Session 6. Modern approaches to investigate larger scale structures in the heliosphere Session 9. Addressing your SHINE Science Questions with Radio Data[2024 Student Poster
067	Cynthia Lopez-Portela	UMBC GSFC-NASA	Multi-Spacecraft Analysis of 3D-Trajectory of Blobs in the Solar Corona	WG1: Solar	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
		Center for Astrophysics Harvard			
068	Samuel T. Badman	& Smithsonian	Structure of the Alfvén surface as probed by Parker Solar Probe and Solar Orbiter	WG1: Solar	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
069	Zhenguang Huang	University of Michigan	Is the Average Energy Deposition Rate in Open Field Regions Constant?	WG1: Solar	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
070	Tyler Eddy	University of Michigan	Concurrent Frozen-in-Flux and Frozen-in-Charge-State Theorems: A Tool for In Situ Solar Wind Measurements	WG1: Solar	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration/Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIO Era/2024 Student Poster
071	Alessandro Liberatore	Jet Propulsion Laboratory	Challenges in Forecasting the Evolution of a Distorted CME Observed During the First Close Solar Orbiter Perihelion	WG1: Solar	Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIO Era
070	Richard Zhang	Cupertino High School and Stanford University	Statistical Survey of Quasi-periodic Fast-mode Propagating Wave Trains (QFPs) Associated with Flares/CMEs in the Solar Corona	WG1: Solar	Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIQ Era
072	Samuel J. Schonfeld			WG1: Solar WG1: Solar	In the PSP/Solo Era
073	Jackson MacTaggart	Air Force Research Laboratory University of Michigan	SIFT/ADAPT Nowcasting and Forecasting of GOES EUVS Irradiance Observations Evolution of Open Magnetic Flux and Solar Wind Across Multiple Solar Cycles	WG1: Solar WG1: Solar	
074	Jackson wachaggan	oniversity or witchigan	Evolution of Open Magnetic Flux and Solar Wind Across Multiple Solar Cycles Initial findings on the presence of a flux rope during the February 15, 2011 coronal mass	WGT. SUIdi	
075	Amaal Mohamed	NRIAG	ejection (CME) eruption, analyzed using the nonlinear force-free field (NLFFF) model	WG1: Solar	
			Far-Side Active Regions Based on Helioseismic and EUV Measurements: A New Dataset		
076	Amr Hamada	National Solar Observatory	for Heliospheric Machine Learning Advancements A Data-constrained Magnetohydrodynamic Simulation of the X2.1 Flare on September 6,	WG1: Solar	
077	Arpita Roddanavar	New Jersey Institute of Technology	2011	WG1: Solar	
078	Christina Kay	APL	LLAMACoRe and More!	WG1: Solar	
			Plasma Dynamics and Connectivity Evolution in a Time-Evolving Model of the Global		
079	Cooper Downs	Predictive Science Inc.	Solar Corona	WG1: Solar	
080	E Johnson Joel Dahlin	University of Delaware University of Maryland, College Park	Collisional Analysis CME Precursors in an MHD Eruption Model	WG1: Solar WG1: Solar	
001	Joel Danin	University of Maryland, College Park	CME Precursors in an MHD Eruption Model	wG1: Solar	
082	Jon Linker	Predictive Science Inc	The Open-source Flux Transport (OFT) model: Application to Time-Evolving MHD Models	WG1: Solar	
083	Khagendra katuwal	NMSU	Magnetic flux imbalaInce in the coronal holes and their relation with solar wind speed	WG1: Solar	
084	Kinfe Teweldebirhan Gebreegzabihar	NASA and CUA	Magnetic Field-Dependent Inflows towards Active Regions & Comparison (Their Nonlinear Impact on a 3D Babcock-Leighton Solar Dynamo Model)	WG1: Solar	
085	Liang Zhao	University of Michigan	Understanding the Solar Wind in-situ Measurements of ACE and Solar Orbiter with Machine Learning and Artificial Intelligence	WG1: Solar	
086	Lizet Casillas	University of California, Los Angeles	Investigating the Structure and Dynamics of the Heliospheric Current Sheet	WG1: Solar	
087	Madison Ascione	George Mason University	An Observational Summary of a Magnetic Island in WISPR-I Images	WG1: Solar	
088	Peter Schuck	NASA/GSFC	The signature of sheath currents during emergence	WG1: Solar	
089	Valmir Moraes Filho	Catholic University at NASA/GSFC	SynCOM: A Model for High-Resolution Simulations of Transient Solar Wind Flows	WG1: Solar	
090	Zhaoming Gan	New Mexico Consortium	High-Resolution Global MHD Simulations of the Near-Sun Solar Wind Turbulence	WG1: Solar	
	· · · · ·		Simulations and Diagnostics of CME Charge State Evolution from the Transition Region		
091	Elizabeth Wraback	University of Michigan	through Heliosphere	WG1: Solar WG2: Interplanetary	2024 Student Poster
092	Shirsh Soni	University of Michigan	Evolution of Switchback Patches Involves Parallel Heating of lons along Straightening Field Lines	WG1: Solar WG2: Interplanetary	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Eruptions/Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating/Session 2. Understanding Variations in Sun's Global Flows/Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
093	Gabor Toth	University of Michigan	Non-adiabatic Shock Heating in Extended Magnetohydrodynamic Models	WG1: Solar WG2: Interplanetary	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations Session 6. Modern approaches to investigate larger scale structures in the heliosphere
000		, ,	· · · · · · ·	the model interplanetally	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and
094	Guanglu Shi	Purple Mountain Observatory, Chinese Academy of Sciences National Space Science Center.	Refinement of global coronal and interplanetary magnetic field extrapolations constrained by remote-sensing and in situ observations at the solar minimum	WG1: Solar WG2: Interplanetary	Observations Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration 2024 Student Poster
095	Yihua Yan	Chinese Academy of Sciences	Explore the solar-terrestrial disturbances by radio technique	WG1: Solar WG2: Interplanetary	Session 9. Addressing your SHINE Science Questions with Radio Data
096	Yeimy Rivera	Center for Astrophysics Harvard & Amp; Smithsonian	Coordinated Coronal and Heliospheric Observations During the 2024 Total Solar Eclipse	WG1: Solar WG2: Interplanetary WG3: Solar energetic particles	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations [Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
097	Jaye Verniero	NASA/GSFC	Hear the songs of the inner heliosphere recorded by Parker Solar Probe	WG1: Solar WG2: Interplanetary WG3: Solar energetic particles WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range[Session 6. Modern approaches to investigate larger scale structures in the heinsphere[Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIO Era
				WG1: Solar WG2: Interplanetary WG3:	
098	C. Alex Young	NASA Goddard Heliophysics	Solar Physics Community Feedback on the Solar Data Analysis Center	Solar energetic particles/WG4: Microphysics	
	C. Alex Young		Solar Physics Community Feedback on the Solar Data Analysis Center On the properties of the Alfven transition zone separating the solar corona and the solar wind		Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations/Session 6. Modern approaches to investigate larger scale structures in the heliosphere

				WG1: Solar WG3: Solar energetic	
100	Leah Zuckerman	University of Colorado, Boulder	Unsupervised Machine Learning to Identify Structures of the Solar Photosphere	particles	2024 Student Poster
101	Meng Jin	Lockheed Martin Solar and Astrophysics Lab (LMSAL)	Exploring the Dynamics of CME-Driven Shocks by Combining Numerical Modeling and Observations	WG1: Solar WG3: Solar energetic particles	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Eruptions[Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays[Session 13. Solar Energetic Particle (SEP) acceleration near the Sun[Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
102	Sailee Sawant	The University of Alabama in Huntsville	Automated Solar Active Region Identification and Characterization Module for the SEPCaster Model	WG1: Solar WG3: Solar energetic particles	Session 13. Solar Energetic Particle (SEP) acceleration near the Sun Session 15. Machine learning-based predictions of solar flares and SEP events
		NASA Goddard Space Flight		WG1: Solar WG3: Solar energetic	
103	Mariana Jeunon	Center/Catholic University of America	Solar Jet Hunter: A Citizen Science Approach to Identifying Coronal Jets in the Sun	particles WG1: Solar/WG3: Solar energetic	
104	Riddhi Bandyopadhyay	Princeton University New Jersey Institute of Technology	Energetic Electron Reversals Observed inside Switchbacks	particles WG4: Microphysics	Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
105	Mia Mancuso	(NJIT)	Magnetic Eruption from a Three-ribbon Flare	WG1: Solar WG4: Microphysics	2024 Student Poster
106	Juan Camilo Buitrago- Casas	Space Sciences Laboratory - UC Berkeley	Advancing Solar Flare Forecasting with Early Signature Detection	WG1: Solar WG4: Microphysics	Session 15. Machine learning-based predictions of solar flares and SEP events
107	Talwinder Singh	Georgia State University	Solar Flare Forecasting using multiple Machine Learning Models and SDO/HMI Data	WG1: Solar/WG4: Microphysics	Session 15. Machine learning-based predictions of solar flares and SEP events
			Congruency Of Enhancement In Magnetic Partial Variance Of Increments And Dayside		
108	Ramiz Qudsi	Boston University	Magnetopause Reconnections	WG1: Solar WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
109	Tak Chu Li	Dartmouth College	Electron-only and ion-coupled magnetic reconnection in plasma turbulence: magnetic flux transport signatures	WG1: Solar WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range Session 4. Beyond the Standard Flare Model
110	Ayla Weitz	University of Colorado Boulder / NSO	Sunspot Penumbral Fine-Scale Bright Dots as a Precursor to Coronal Plumes?	WG1: Solar WG4: Microphysics	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration 2024 Student Poster
111	Dominic Payne	University of Maryland	How Magnetic Shear Influences Local Thermodynamics Before and During Reconnection Onset	WG1: Solar WG4: Microphysics	Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
112		Florida Institute of Technology	Determining the Origin and Magnetic Connection of Solar Wind Streams Using Time- Backward and Time-Forward MHD Simulations	WG2: Interplanetary	2024 Student Poster
	· ·	The University of Alabama in	MHD Modeling of the Ambient Solar Wind with Quantified Uncertainties: Multi-Spacecraft		
113	Dinesha Hegde	Huntsville	Validation in the Inner Heliosphere	WG2: Interplanetary	2024 Student Poster
114	Katherine Holland	Embry-Riddle Aeronautical University, NASA Kennedy Space Center	Understanding Dissipation of Length Scales of Solar Wind Magnetic Structures from L1 to Lunar Orbit to Earth,Åös Bow Shock Using Information Theory Latitudinal Variation of the Background Solar Wind in the Inner Heliosphere from Multi-	WG2: Interplanetary	2024 Student Poster
115	Nikolett Biro	University of Michigan	Spacecraft Observations	WG2: Interplanetary	2024 Student Poster
116	Sarah Henderson	Montana State University, Bozeman, MT, USA	Corotating Interaction Regions at Mars: Observations by MAVEN	WG2: Interplanetary	2024 Student Poster
117	Siqi Wang	University of Hawaii at Manoa	Properties of Forbush Decreases with AMS-02 daily Proton, Helium and Electron data	WG2: Interplanetary	2024 Student Poster
118	Bernard V. Jackson	Department of Astronomy and Astrophysics, University of California, San Diego, 9500 Gilman Drive #0424, La Jolla, CA 92093-0424, USA	The UCSD Real-Time 3-D Heliospheric Reconstruction Analyses as Citizens, Åô Science Outreach	WG2: Interplanetary	Session 10. Seeing the Unseen: Sun in radio wavelengths Session 2. Understanding Variations in Sun's Global Flows Session 6. Modern approaches to investigate larger scale structures in the helicsphere Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIO Era Session 9. Addressing your SHINE Science Questions with Radio Data
119	Sanchita Pal	NASA GSFC	Automatic classification of solar wind stream in the interplanetary medium	WG2: Interplanetary	Session 15. Machine learning-based predictions of solar flares and SEP events/Session 6. Modern approaches to investigate larger scale structures in the heliosphere
120	Elena Provornikova	JHU APL	High-resolution global MHD simulation of interplanetary propagation of September 5, 2022 CME event	2 WG2: Interplanetary	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations
121	Jia Huang	Space Sciences Laboratory, U.C. Berkeley NASA Jet Propulsion Laboratory,	The Temperature Anisotropy and Alpha Abundance Features of Alfv/@nic Slow Solar Wind Observed by Parker Solar Probe and Wind Missions	WG2: Interplanetary	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations/Session 2. Understanding Variations in Sun's Global Flows/Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
122	Jamie Jasinski	California Institute of Technology.	Voyager 2 measurements of solar wind corotating interaction regions at Uranus	WG2: Interplanetary	Session 17. Making Cross-Heliospheric and Cross-Scale Connections with Global Modeling and Observations Session 6. Modern approaches to investigate larger scale structures in the heliosphere
123	Chin-Chun Wu	US Naval Research Laboratory, Washington D. C., USA	Global simulation of the solar wind validated with Ulysses measurements	WG2: Interplanetary	Session 2. Understanding Variations in Sun's Global Flows
	Mario Bisi	UKRI STFC RAL Space	Radio Investigations for Space Environment Research (RISER): Year 1 Progress	WG2: Interplanetary	Session 2. Understanding Variations in Sun's Global Flows/Session 6. Modern approaches to investigate larger scale structures in the heliosphere/Session 9. Addressing your SHINE Science Questions with Radio Data
125	Mingzhe Liu	Space Sciences Laboratory, University of California, Berkeley, CA94720- 7450, USA	/ Calibration of antenna and spacecraft floating potential measurements for Parker Solar Probe	WG2: Interplanetary	Session 20. The Things I Wish the Community Would Stop Getting Wrong: Facilitating Knowledge Dissemination (Town Hall)
126	Ying Wang	New jersey institute of technology	Multi-Observational Analysis of a Rotating CME from Solar Eruption to Earth Impact	WG2: Interplanetary	Session 5. Flare- & amp; CME-Associated Evolution of Active-Region Coronal Currents
127	Andreas J. Weiss	NASA Postdoctoral Program Fellowship	Distorted Magnetic Flux Ropes within Interplanetary Coronal Mass Ejections	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
128	Brian Wood	Naval Research Laboratory	Multi-spacecraft Probing of CME Field Structure at Small Longitudinal Separations	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
129		Space Science Center, UNH	Estimating the Magnetic Helicity of Coronal Mass Ejections at 1 AU.¬+	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
130	Qiang Hu	The University of Alabama in Huntsville (UAH)	Characterization of ICME magnetic flux ropes from multiview observations	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
			Three-Dimensional Simulation of Geo-Effective Small-to-Mesoscale Solar Wind Structures		
131		University of Michigan	Observable by SWIFT Constellation	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
132	Sahanaj Aktar Banu	University of New Hampshire	Multi-Spacecraft Measurements of CMEs by "†Wind and STEREO-A: 2022 ,Äi 2023 †	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere 2024 Student Poster Session 6. Modern approaches to investigate larger scale structures in the heliosphere Session 7. Achieving
133	Phillip Hess	US Naval Research Laboratory	Combining Images from PSP/WISPR, SolO/SoloHI and 1 AU to Track Small Scale Features within Coronal Mass Ejections	WG2: Interplanetary	coronal and solar wind science closure with multi-mission collaboration/Session 8. Unflying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era

			Comparing Operational Geospace Model Results Using STEREO-A and L1 Storm		Session 6. Modern approaches to investigate larger scale structures in the heliosphere/Session 8. Unifying
134	Anthony Rasca	CU/CIRES	Observations	WG2: Interplanetary	the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
135	Bin Zhuang	University of New Hampshire	Understanding the Evolution of the Three-Part Structure of a Coronal Mass Ejection on 2012 July 26	WG2: Interplanetary	Session 6. Modern approaches to investigate larger scale structures in the heliosphere Session 8. Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SolO Era
136	Evangelia Samara	NASA/Goddard	Modeling time-dependent solar wind in the inner heliosphere: advances and challenges	WG2: Interplanetary	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
137	Nicholeen Viall	NASA Goddard Space Flight Center	Periodic Solar Wind Density Structures	WG2: Interplanetary	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
137		NACK Couldard Opace Fright Center	T chodic obiar wind behavy ordedates	WOZ. Incipiancially	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
138	Laura Balmaceda	George Mason University	EXPLORING THE ROOT CAUSE OF THE CME,ÄÖS ROTATION IN THE HELIOSPHERE	WG2: Interplanetary	Unifying the Physical Understanding of CMEs through Remote Sensing and In-Situ Observations in the PSP/SoIO Era
139	Vamsee Krishna Jagarlamudi	Johns Hopkins University Applied Physics Laboratory	Sub-Alfvénic Wind Intervals Observed by Parker Solar Probe	WG2: Interplanetary	
139	Jaganamuu	Filysics Eaboratory	Wave and Perturbation Polarization Techniques: Adaptive Minimum Variance Analysis	woz. interplanetaly	
140	Alexandre (Leo) Brosius	Penn State/GSFC	(MVA) and Möbius Transformation	WG2: Interplanetary	
141	Bennett A. Maruca	University of Delaware	The Trans-Heliospheric Survey: Trends in Plasma Parameters Across the Heliosphere	WG2: Interplanetary	
142	Chen Shi	UCLA	Analytic model and MHD simulations of three-dimensional magnetic switchbacks		
				WG2: Interplanetary	
143	John Richardson	MIT	Voyager Observations of the Interstellar Medium	WG2: Interplanetary	
444	12 I 147 I I		Identifying Solar Wind Time Intervals at Mars: Comparing a physics-based algorithm with a		
144	Kyle Webster	University of California Los Angeles Harvard University, Smithsonian	machine learning approach	WG2: Interplanetary	
145	Lidiya Ahmed	Astrophysical Observatory	Using Dynamic Time Warping to Understand the Radial Evolution of Solar Wind Streams	WG2: Internlanetary	
145	Eldiya Annica	Astophysical observatory	The Angular Width of Coronal Mass Ejections as Derived from Multi-Spacecraft	WOZ. Incipianciary	
146	Noe Lugaz	University of New Hampshire	Measurements with STEREO Exploring Low Frequency Interplanetary Magnetic Field Spectra at ~0.4 AU using	WG2: Interplanetary	
147	Rayta Pradata	University of Delaware	Exploring Low Frequency interplanetary magnetic Field Spectra at ~0.4 AU using MESSENGER Data	WG2: Interplanetary	
148	Senbei Du	Boston University	The effects of turbulence on heliosheath ions and implications for energetic neutral atoms	WG2: Interplanetary	
140			Testing Machine Learning Approach for Identification and Categorization of Ion-Kinetic		
149	Viacheslav Sadykov	Georgia State University	Instabilities on Hybrid-PIC Simulations	WG2: Interplanetary	
150	Yakub Olufadi	University of New Hampshire	Evolution of CME Properties through Superposed Epoch Analysis from 0.2 to 1.2 au	WG2: Interplanetary	
151	David Galarza	University of Florida	Suprathermal Electron Transport Within the Heliosphere	WG2: Interplanetary WG3: Solar energetic particles	2024 Student Poster
152	Alicia Petersen	University of Florida	Suprathermal Electrons in the Heliospheric Magnetic Field	WG2: Interplanetary WG3: Solar energetic particles	Session 1. Exploring the Solar and Stellar Connection: Investigating Solar and Stellar Winds in Relation to Magnetic Fields and Eruptions[Session 6. Modern approaches to investigate larger scale structures in the heliosphere[Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
153	James Ryan	UNH	What's Wrong with the Idea that CME-Shock Particles Produce 100-MeV Gamma Rays?	WG2: Interplanetary WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs ÄIThe Big Picture Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays Session 13. Solar Energetic Particle (SEP) acceleration near the Sun
154	Jakobus A. le Roux	University of Alabama in Huntsville	Tempered Superdiffusive Shock Acceleration at a Perpendicular Shock	WG2: Interplanetary WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays[Session 13. Solar Energetic Particle (SEP) acceleration near the Sun[Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
455	Mahas A. Davah	Courthermont Documents in affit do	Observational avidence of interview field line analysis	WG2: Interplanetary WG3: Solar	
155	Maher A. Dayeh	Southwest Research Institute Department of Space Science, The	Observational evidence of interplanetary field line meandering	energetic particles WG2: Interplanetary/WG3: Solar	Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
156	Paria Abouhamzeh	University of Alabama in Huntsville	Preliminary Modeling of the Structure of Shocks Mediated by Pickup lons	energetic particles	Session 22. Pickup lons in the Heliosphere and Beyond
157	Adam Szabo	NASA/GSFC	The Heliospheric Current Sheet Observed by Parker Solar Probe	WG2: Interplanetary WG3: Solar energetic particles	Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
150	Fernando Carcaboso	NPP NASA GSFC	Exploring Electron Pitch Angle Distributions from PSP in Solar Wind	WG2: Interplanetary WG3: Solar energetic particles	
158	r emanuo Carcaboso	NET MASA GOEG	Sensitivity of the Galactic Cosmic Ray Anisotropy from Neutron Monitors to the Large	WG2: Interplanetary/WG3: Solar	
159	Pierre-Simon Mangeard	University of Delaware	Scale Averaged Interplanetary Magnetic Field	energetic particles WG2: Interplanetary/WG3: Solar	
160	Nicholas Furioso	University of Florida	Solar Energetic Particle Transport Using Discrete Exterior Calculus 7	energetic particles/WG4: Microphysics	Session 19. Unraveling Turbulence Dynamics in the Very Local Interstellar Medium (VLISM) and the
161	Lingling Zhao	University of Alabama in Huntsville	Turbulence, Waves, and Taylor, Äôs hypothesis for Heliosheath Observations	WG2: Interplanetary WG4: Microphysics	
162	Eric Zirnstein	Princeton University	Global Heliospheric Termination Shock Strength in the Solar-Interstellar Interaction		Session 22. Pickup Ions in the Heliosphere and Beyond
102	LIIC ZIIIISIEIII	r mileton oniversity	SWIFT: Resolving the Three-Dimensional Morphology and Dynamics of Geo-Effective	woz. merpranetary/wo4. witcrophysics	Session 22. Fixup ions in the mellosphere and beyond
163	M. Akhavan-Tafti	University of Michigan	Solar Wind Structures	WG2: Interplanetary WG4: Microphysics	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
164	Seth Dorfman	Space Science Institute	Probing the edge of a large-scale wave region with single spacecraft techniques	WG2: Interplanetary/WG4: Microphysics	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
	Alyssa Russell	University of Michigan	Investigating the characteristics of suprathermal heavy ion composition in fast solar wind and ICMEs using WIND/STICS observations over 1998-2018		Session 7. Achieving coronal and solar wind science closure with multi-mission collaboration
103	Aiyood (1000011	oniversity of Michigan	Venusian DC Electric Fields Using PSP; Looking into Different Sources and their	woz. merpianetary/wo4. witotophysics	
166	Dylan Conner	West Virginia University	Uncertainties	WG2: Interplanetary WG4: Microphysics	
167	Xiangrong Fu	Los Alamos National Laboratory	Parametric Decay Instability and Density Fluctuations in the Near-Sun Solar Wind	WG2: Interplanetary WG4: Microphysics	
168	Andrew Kuhlman	University of New Hampshire	Redepolyment of the Haleakala Neutron Monitor in Hawaii	WG3: Solar energetic particles	2024 Student Poster
100	Nibuna Siranjeevi Madam	Department of Space Science and Center for Space Plasma and Aeronomic Research (CSPAR), The			
169	Subashchandar	University of Alabama in Huntsville.	A new improved Force-Field model to study the solar modulation of galactic cosmic rays	WG3: Solar energetic particles	2024 Student Poster

			Properties of Energetic Particles in the Sub-Alfvénic Solar Wind Flow Observed by		
170	Prachi Sanjay Pathare	UTSA-SwRI	Parker Solar Probe	WG3: Solar energetic particles	2024 Student Poster
171	Syed Ayaz	University of Alabama in Huntsville	Alfven waves in Temperature Anisotropic Cairns Distributed Plasma	WG3: Solar energetic particles	2024 Student Poster
172	Weihao Liu	University of Michigan	High-Resolution Poisson Bracket Scheme Performance on Solar Energetic Particle and Galactic Cosmic Ray Simulations	WG3: Solar energetic particles	2024 Student Poster
173	Cristina Consolandi	University of Hawaii	Calibration of Neutron Monitor Yield Functions with AMS Data on the ISS	WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs,ÄiThe Big Picture
174	Du Toit Strauss	Centre for Space Research, North- West University, South Africa	Measuring the waiting time distribution of neutron monitor counts	WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs,ÄThe Big Picture
175	Arfa Mubashir	Georgia State University	Muon and neutron flux time lag analysis and variations during recent high solar activity days at different geomagnetic cutoff rigidities	WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs ÄiThe Big Picture/2024 Student Poster
176	Malcolm Colson	University of New Hampshire	Investigating the Connection between Cosmic Rays and Cloud Coverage	WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs,ÄThe Big Picture/2024 Student Poster
177	Claudio Corti	CCMC; University of Hawaii at Manoa		WG3: Solar energetic particles	Session 11. Neutron Monitors and GLEs ÄiThe Big Picture/Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
178	J. Grant Mitchell	NASA/GSFC	ISOIS Solar Gamma-Ray Measurements: Calibrations and Observations from First Measurement	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
179	Jeongbhin Seo	Los Alamos National Laboratory	Efficient Electron Acceleration in the Solar Flare Region	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
180	Radoslav Bucik	Southwest Research Institute, San Antonio, TX, USA	Origin of 3He abundance enhancements in gradual solar energetic particle events	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
181	Rick Leske	California Institute of Technology	A Preliminary Survey of Gamma-Ray Flares Detected by EPI-Hi on Parker Solar Probe	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
182	Wenwen Wei	Space Sciences Laboratory, University of California, Berkeley	y Very Large and Long-lasting Anisotropies Caused by Sunward Streaming Energetic lons: Solar Orbiter and STEREO A Observations	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays
183	Adele Payman	Caltech	Diagnostic for detecting X-ray producing electrons in the Caltech MHD jet experiment	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays/2024 Student Poster
184	Samuel T. Hart	The University of Texas at San Antonio	Recurrent 3He-rich Injections Observed by Parker Solar Probe and ACE During Quiescen Solar Wind Conditions	t WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays Session 13. Solar Energetic Particle (SEP) acceleration near the Sun
185	Abdullah Shmies	The University of Texas at San Antonio	Timing Analysis of Extreme Solar Energetic Particle Events A oreliminary analysis of 3He-rich solar energetic particle events measured via ISOIS	WG3: Solar energetic particles	Session 12. Particle Acceleration in Solar Flares and at CME-driven Shocks: Their Interconnection in Producing SEPs and Gamma-rays Session 13. Solar Energetic Particle (SEP) acceleration near the Sun 2024 Student Poster
-	G.D. Muro	California Institute of Technology	during Parker Solar Probe,Äôs orbit 19	WG3: Solar energetic particles	Session 13. Solar Energetic Particle (SEP) acceleration near the Sun
-	Zigong Xu	California Institute of Technology	Inverse velocity arrival feature of the 31 December 2023 SEP event	WG3: Solar energetic particles	Session 13. Solar Energetic Particle (SEP) acceleration near the Sun
188	Pouya Hosseinzadeh	Utah State University	Enhancing SEP Event Prediction through Time Series Data Augmentation Fine-scale Variations of Energetic Particle intensities in Solar Energetic Particle Events in	WG3: Solar energetic particles	Session 13. Solar Energetic Particle (SEP) acceleration near the Sun 2024 Student Poster
189	Fan Guo	Los Alamos National Laboratory	the Inner Heliosphere	WG3: Solar energetic particles	Session 14. Understanding the role of turbulence and diffusion in SEP transport in the inner heliosphere
190	Katie Whitman	KBR, NASA JSC SRAG The University of Alabama in	First Results from NASA's Ongoing SEP Model Validation (SEPVAL) Effort	WG3: Solar energetic particles	Session 15. Machine learning-based predictions of solar flares and SEP events
191	Nikolai Pogorelov	Huntsville	Global Heliosphere: The Role of Pickup Ion, Neutral Atoms, and Galactic Cosmic Rays	WG3: Solar energetic particles	Session 22. Pickup lons in the Heliosphere and Beyond
192	Yifan Huang	LANL	On the anisotropy of the interstellar pick up ions in the solar wind Radial Dependency of CME-associated Particle Acceleration Processes via Multipoint	WG3: Solar energetic particles	Session 22. Pickup lons in the Heliosphere and Beyond
193	Malik Walker	Johns Hopkins University	Observations from 2010-2024	WG3: Solar energetic particles	
194	A. Santa Fe Duenas	UNH	Energetic Storm Particle CME Deflection during Solar Cycles 23 and 24	WG3: Solar energetic particles	
195	Aatiya Ali	Georgia State University	Comparative Analysis of Solar Proton Event Characteristics at Lagrange Point-1 and the Geostationary Orbit	WG3: Solar energetic particles	
196	Amelia Lee	Mount Holyoke College	Analysis of Longitudinal Spread of Impulsive SEP Events Using Time-Intensity Profiles and Energetic Ion Spectra	WG3: Solar energetic particles	
197	Anastasia Kuske	New Jersey Institute of Technology (NJIT)	Characterizing the Statistical Properties and Long-Term Evolution of Type III Solar Radio Bursts	WG3: Solar energetic particles	
198	Ashraf Moradi	University of Arizona	SEP Anisotropy Map of the Impulsive Solar Energetic Particle Events at Earth	WG3: Solar energetic particles	
199	Chloe Heifner	University of Delaware, University of Wisconsin-River Falls	Investigation of Neutron Monitor Response to Cosmic Ray Air Showers	WG3: Solar energetic particles	
200	Chris Light	NASA - CCMC	Forbush-like shielding of Solar Energetic Particles	WG3: Solar energetic particles	
201	Hui Li	Los Alamos National Laboratory	Transport of Energetic Particles in the Compressible MHD Turbulence with Asymmetric Frequency Broadening Effects	WG3: Solar energetic particles	
202	Vahe Petrosian	Stanford Universoty	Particle Acceleration and Transport at the Flare Site and CME-driven Shock and their Interconnections	WG3: Solar energetic particles	
	G. Pomraning	Princeton University, Princeton Plasma Physics Laboratory	Particle Acceleration due to Magnetically Driven Reconnection using Laser-Powered Capacitive Coils	WG3: Solar energetic particles/WG4: Microphysics	2024 Student Poster
204	Hanqing Ma	University of Maryland	Whistler Wave Scattering of Energetic Electrons Past 90,6¶	WG3: Solar energetic particles WG4: Microphysics	2024 Student Poster
			Correlation between the Upstream Diffusion Coefficient and a Shock's Peak Energetic	WG3: Solar energetic particles/WG4:	
	Manuel Enrique Cuesta	Princeton University	Particle Intensity	Microphysics WG3: Solar energetic particles/WG4:	
	Siyao Xu	University of Florida	Turbulence in the VLISM The Non-Thermal Acceleration of lons in Hybrid-Kinetic Supersonic Turbulence	Microphysics WG3: Solar energetic particles WG4:	
207		The University of Alabama in	Simulations Evolution of Anisotropic Turbulence in the Slow Solar Wind between the Sun and the	Microphysics	2022 Session 04. Heliospheric Turbulence I ,Åi Interplay of Large-scale Structure with Turbulence/2024
208	Monika Karki	Huntsville	Earth	WG4: Microphysics	Student Poster
209	Geoffrey Jenkins	University of Michigan	Multi-point Correlation Scale Lengths of Solar Wind Magnetic Structures	WG4: Microphysics	2024 Student Poster

210	C. Crawford	The University of Alabama in Huntsville	The Scaling of Vortical Electron Acceleration in Thin-Current Magnetic Reconnection and Its Implications in Solar Flares	WG4: Microphysics	2024 Student Poster
21	Haotian Da	University of Maryland	The Production of ACRs through the Energization of Pickup lons during Magnetic Reconnection	WG4: Microphysics	2024 Student Poster
212	Jada Walters	University of Arizona	10-Moment, Multi-Fluid Simulations of Proton Firehose Instabilities and Electron Behavior	WG4: Microphysics	2024 Student Poster
213	Joshua Goodwill	University of Delaware	Nonlinear Evolution and Energy Dissipation in Shear Driven Turbulence of Collisionless Plasma	WG4: Microphysics	2024 Student Poster
214	Rui Huang	Department of Physics and Astronomy University of Iowa	, What is Transit-Time Damping and How to Identify it in Space Plasma Turbulence	WG4: Microphysics	2024 Student Poster
21		University of Arizona	Hybrid Simulations of Decaying High-Beta Plasma Turbulence	WG4: Microphysics	2024 Student Poster
210	Zhiyu Yin	University of Maryland	Modeling Electron and Proton Acceleration in Macroscale Magnetic Reconnection	WG4: Microphysics	2024 Student Poster
	Benjamin Chandran	University of New Hampshire	Incorporating the Helicity Barrier and Turbulent Heating into a Two-Fluid Solar-Wind Model	WG4: Microphysics	Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating
	Gregory Howes	University of Iowa	The Fundamental Parameters of Astrophysical Plasma Turbulence and its Dissipation	WG4: Microphysics	Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating Session 16. The role of the Helicity Barrier: Impact on Solar Wind Imbalanced Turbulence and Heating/Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range/Session 19. Unraveling Turbulence Dynamics in the Very Local Interstellar Medium (VLISM) and the Connection with Heliophysics
219	Sarah Conley	Princeton University	The Kinetic Analog of the Pressure-Strain Interaction: Case Studies of Landau Damping	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
220	Juan Carlos Palacios	Florida Institute of Technology	Parametric description of intermittent probability distribution functions in solar wind and magnetohydrodynamic turbulence	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
22		West Virginia University	Analysis of the evolution of the phase space density of internal energy using pressure- strain interaction and heat flux	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissication Rance
		Smithsonian Astrophysical	Exploring Kinetic Processes in the Upper Corona and Solar Wind: Insights from Parker		
222		Observatory	Solar Probe	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
223	Samuel Fordin	University of Delaware	A Statistical Study of Wave Properties Across Multiple Solar Cycles Structure and scaling of electron pressure-strain interaction as a function of guide field in	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
224	Subash Adhikari	University of Delaware	ion coupled reconnection	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
225	Yi-Min Huang	Princeton University	Does the Coronal Heating Rate Depend on Microscopic Reconnection Physics?	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range
220	Ashok Silwal	University of Alabama in Huntsville	Evolution of solar wind turbulence during radial alignment of Parker Solar Probe with Sola Orbiter in December 2022	r WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range/2024 Student Poster
227	Lily Strus	University of Colorado Boulder	A Tale of Two Waves and a Particle: What lies beyond the Quasilinear Approximation	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range 2024 Student Poster
228	Hasith Perera	West Virginia University	Revisiting Landau damping of collisionless Langmuir waves through the lens of entropy	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range 2024 Student Poster
229	Jiaming Wang	Department of Physics and Astronomy University of Delaware	Anisotropy of Density Fluctuations in the Solar Wind at 1 au	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range 2024 Student Poster
230	Sohom Roy	University of Delaware	Investigating the scale-dependent conversion of turbulent energy in the magnetosheath	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range 2024 Student Poster
23	Yogesh	CUA/GSFC NASA	Investigation on the dispersive ion-cyclotron waves in the solar wind	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range/2024 Student Poster
232	2 Yuliang Ding	EPSS, UCLA	Solar Wind Turbulence: Superposed, Äêepoch Analysis of Corotating Interaction Regions	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range/2024 Student Poster
233	3 Zhuo Liu	Massachusetts Institute of Techonology	Electron-only reconnection and inverse magnetic-energy transfer at sub-ion scales	WG4: Microphysics	Session 18. Multiscale Nature of Plasma Turbulence from Inertial Scales to Dissipation Range Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere 2024 Student Poster
234	Federico Fraternale	Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntville	Time Variations in Turbulence Properties of the VLISM and Inner Heliosheath	WG4: Microphysics	Session 19. Unraveling Turbulence Dynamics in the Very Local Interstellar Medium (VLISM) and the Connection with Heliophysics Session 19. Unraveling Turbulence Dynamics in the Very Local Interstellar Medium (VLISM) and the
23	Gary Zank	University of Alabama in Huntsville	Understanding Turbulence in the Very Local Interstellar Medium (VLISM)	WG4: Microphysics	Connection with Heliophysics
236	Jessica Hamilton	Georgia State University	Studying Upward-Propagating Acoustic Waves in Realistic 3D RMHD Simulations of the Sun via Dynamics of Photospheric Fe I and Na I Lines	WG4: Microphysics	Session 3. Small-scale magnetism and dynamics in the lower solar atmosphere/2024 Student Poster
	Katayoun Movassaghi				
237		Florida Institute of Technology	On the Spatial Correlation of Solar Wind Turbulence	WG4: Microphysics	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
238		Florida Institute of Technology	On the nature of low-frequency power spectra in solar wind turbulence	WG4: Microphysics	Session 6. Modern approaches to investigate larger scale structures in the heliosphere
239		University of California Berkeley	On the Collisionality of Solar Wind Electrons: New Insights Traversing the Slopes of Phase Space with ALPS: Linear Dispersion Relations for	WG4: Microphysics	
240	Kristopher Gregory Klein	University of Arizona Space Sciences Laboratory - UC	Arbitrary Plasma Distributions	WG4: Microphysics	
241	Kyung-Eun Choi	Berkeley The University of Alabama in	Wave activity at switchback boundaries in the young solar wind MHD Inertial and Energy-containing Range Turbulence Anisotropy in the Young Solar	WG4: Microphysics	
242	Laxman Adhikari	Huntsville	Wind mental and Energy-containing Range Fundulence Anisotropy in the Foung Solar Wind	WG4: Microphysics	
243	Leon Ofman	Catholic University of America and NASA GSFC	Modeling Anisotropic Ion Beams in the Solar Wind Guided by PSP Observations	WG4: Microphysics	
		Laboratory for Atmospheric and Space Physics, University of Colorado,			
244	Neha Pathak	Boulder	Parallel Electric Fields at the Plasma Sheet Boundary Layer	WG4: Microphysics	
24	Nickolas Giardetti	Florida Institute of Technology	The Characteristics of Slow Solar Wind in Regions of High and Low Heliographic Latitude	WG4: Microphysics	
246	Niranjana Shankarappa	The University of Arizona	Estimated Heating Rates Due to Cyclotron and Landau Damping Using PSP Observations	s WG4: Microphysics	

247	Nooshin Davis	University of New Hampshire	INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF PROTON BEAM IN THE SOLAR WIND	WG4: Microphysics	
		University of California San Diego	Anti-symmetric and Positivity Preserving Formulation for the Kinetic Equations	WG4: Microphysics	
249	P. S. Pyakurel	University of California - Berkeley	Investigating the Onset and Suppression of Reconnection in Plasma Environments: Insights from MMS Observations	WG4: Microphysics	
250	Zubair Shaikh	Space Sciences Laboratory, UC Berkeley, USA	Electrostatic Solitary Waves in the Earth's Magnetosheath	WG4: Microphysics	
251	Isaac Asante	Georgia State University	Comparison of ring diagrams based on the Doppler shift synthetic data obtained with bisector method and SDO/HMI pipeline	WG1: Solar	2024 Student Poster
252	Sarah Bruce	University of Colorado Boulder	K-Coronal Temperatures Eclipse Experiment	WG1: Solar	2024 Student Poster
253	Jack Schroeder	University of Wisconsin	Electron heating at Earth's quasi-perpendicular bow shock measured by MMS: a relative comparison of compression and magnetic pumping	WG4: Microphysics	2024 Student Poster