Estimated Heating Rates Due to Cyclotron and Landau Damping Using PSP Observations

Authors: Niranjana Shankarappa (The University of Arizona), Kristopher Klein (The University of Arizona), Mihailo Martinovic (The University of Arizona), Trevor Bowen (Space Sciences Laboratory))

Circularly polarized waves consistent with parallel-propagating ion cyclotron waves (ICWs) and fast magnetosonic waves (FMWs) are often observed by Parker Solar Probe (PSP) at ion kinetic scales. Such waves damp energy via the cyclotron resonance, with such damping expected to play a significant role in the enhanced, anisotropic heating of the solar wind observed in the inner heliosphere. We employ a linear plasma dispersion solver, PLUME, to evaluate frequencies of ICWs and FMWs in the plasma rest frame and Doppler-shift them to the spacecraft frame, calculating their damping rates at frequencies where persistently high values of circular polarization are observed. We find such ion-scale waves are observed during 20.37% of PSP Encounters 1 and 2 observations and their plasma frame frequencies are consistent with them being transient ICWs. We estimate significant ICW dissipation onto protons, consistent with previous empirical estimates for the total turbulent damping rates, indicating that ICW dissipation could account for the observed enhancements in the proton temperature and its anisotropy with respect to the mean magnetic field.