Is the coronal magnetic topology of Potential Field Source Surface models robust to boundary conditions from different Surface Flux Transport models?

Authors: Graham Barnes(NWRA), Marc DeRosa(LMSAL), Shaela Jones(NASA GSFC), Mark Cheung(LMSAL), C. Nick Arge,(NASA GSFC), Carl Henney(AFRL)

The geometry, connectivity, and topology of the large-scale coronal magnetic field play a key role in determining whether a solar reconnection event will result in an eruption, either by influencing the location where magnetic reconnection releases energy for an event, or by determining the pathways and access to open field that allow an eruption to proceed. Knowing how reliably the coronal magnetic field can be inferred is critical to understanding its role in energetic events. Potential Field Source Surface (PFSS) models are a commonly used tool for both modeling the coronal field itself, and as input to other models. Multiple methods exist for generating the boundary condition needed for a PFSS model. We present here results of examining how robust the PFSS model topology is to boundary maps from three different flux transport models (ADAPT, SSW-PFSS, and STroBE), as measured by the presence of coronal magnetic null points and solar wind predictions from the Wang-Sheely-Arge model.

This material is based upon work supported by NASA under award No. 80NSSC19K0087. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.